
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Reference Guide

�

CattBot
Building Instructions

�

�

�

�

�

�:�

�

�x

�x

�

�

�

�

�

�

�

�

�:�

�:�

�
�x �x

�x

�x

�

�

�

�x

�x
�:�

�0

��

�
�x

��

�

��

�

��

�:�

�

��

�0
�x

�x

��

�:�

��

�x

��

��
�x

�x

��

��
�x

�x

��

��

�0

��

��

��

�x

�x
�:�

��

��

��

�x

�:�

��

��
�x�x

��

��
�x B

�

�

��

C

�

�

��

Your CattBot is now complete!

ROBOTC

Reference

Timers© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Timers are very useful for performing a more complex behavior for a certain period of time.
Wait states (from wait1Msec) don’t let the robot execute commands during the waiting period,
which is fine for simple behaviors like moving forward. If calculations or other actions need to
occur during the timed period, as with the line tracking behavior below, a Timer must be used.

Timers

task main()
{
 ClearTimer(T1);
 while(time1[T1] < 3000)
 {
 if(SensorValue(lightSensor) < 45)
 {
 motor[motorC]=50;
 motor[motorB]=0;
 }
 else
 {
 motor[motorC] = 0;
 motor[motorB] = 50;
 }
 }

First, you must reset and start a timer by using the ClearTimer() command.
Here’s how the command is set up:

ClearTimer(Timer_number);

The NXT has 4 built in timers: T1, T2, T3, and T4.
So if you wanted to reset and start Timer T1, you would type:

ClearTimer(T1);

Then, you can retrieve the value of the timer by using time1[T1], time10[T1], or time100[T1]
depending on whether you want the output to be in 1, 10, or 100 millisecond values.

In the example above, you should see in the condition that we used time1[T1]. The robot will track
a line until the value of the timer is less than 3 seconds. The program ends after 3 seconds.

Timer in the (condition)
This loop will run “while the
timer’s value is less than
3 seconds”, i.e. less than
3 seconds have passed
since the reset. The line
tracking behavior inside the
{body} will continue for 3

Clear the Timer
Clearing the timer resets
and starts the timer. You
can choose to reset any
of the timers, from T1
to T4.

ROBOTC

Reference

Comments© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Comments

/*
 This program uses commenting
 to describe each process.
*/

task main()
{
 motor[motorC]=100; //motorC receives 100% power
 motor[motorB]=100; //motorB receives 100% power
 wait1Msec(5000); //both motors run for 5 sec.
}

Below is an example of a program with single and multi-line comments. Commented text turns green.

Commenting a program means using descriptive text to explain portions of code. The compiler
and robot both ignore comments when running the program, allowing a programmer to leave
important notes in non-code format, right alongside the program code itself. This is considered
very good programming style, because it cuts down on potential confusion later on when
someone else (or even you) may need to read the code.

There are two ways to mark a section of text as a comment rather than normal code:

Type Start Notation End Notation

Single line // (none)

Multiple line /* */

“Commenting out” Code

Commenting is also sometimes used to temporarily “disable” code in a program without deleting
it. In the program below, the programmer has code to run straight and then turn right. However,
in order to test just the first part of the program, she made the second behavior into a comment,
so that the robot would ignore it. When she is done testing the first behavior, she will remove the
// comment marks to re-enable the second behavior in the program.

task main()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(5000);

 //motor[motorC]=100;
 //motor[motorB]=-100;
 //wait1Msec(1500);
}

ROBOTC

Reference

Variables • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables
Variables are places to store values (such as sensor readings) for later use, or for use in
calculations. There are three main steps involved in using a variable:

task main()
{
 int speed;

 speed = 75;

 motor[motorC] = speed;
 motor[motorB] = speed;
 wait1Msec(2000);
}

Declaration
The variable is created by announcing its type,
followed by its name. Here, it is a variable
named speed that will store an integer.

1. Introduce (create or “declare”) the variable
2. Give (“assign”) the variable a value
3. Use the variable to access the stored value

Assignment
The variable is assigned a value. The variable
speed now contains the integer value 75.

Use
The variable can now “stand in” for any value of the appropriate
type, and will act as if its stored value were in its place.

Here, both motor commands expect integers for power settings,
so the int variable speed can stand in. The commands set their
respective motor powers to the value stored in speed, 75.

In the example above, the variable “speed” is used to store a number, and then retrieve
and use that value when it is called for later on. Specifically, it stores a number given by the
programmer, and retrieves it twice in the two different places that it is used, once for each of the
motor commands. This way both motors are set to the same value, but more interestingly, you
would only need to change one line of code to change both motor powers.

task main()
{
 int speed;

 speed = 50;

 motor[motorC] = speed;
 motor[motorB] = speed;
 wait1Msec(2000);
}

One line changed
The value assigned to speed is now 50 instead of 75.

Changed without being changed
No change was made to the program here, but
because these lines use the value contained in the
variable, both lines now tell their motors to run at
a power level of 50 instead of 75.

This example shows just one way in which variables can be used, as a convenience for
the programmer. With a robot, however, the ability to store sensor values (values that are
measured by the robot, rather than set by the programmer) adds invaluable new
capabilities. It gives the robot the ability to take measurements in one place and deliver them
in another, or even do its own calculations using stored values. The same basic rules are
followed, but the possibilities go far beyond just what you’ve seen so far!

ROBOTC

Reference

Variables • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Declaration Rules
In order to declare a variable, you must declare its type, followed by its name. Here are some
specifics about the rules governing each:

Proper Variable
Names

Improper Variable
Names

linecounter line counter

threshold threshold!

distance3 3distance

timecounter time1[T1]

Rules for Variable Names

• A variable name can not have spaces in it

• A variable name can not have symbols in it

• A variable name can not start with a number

• A variable name can not be the same as an
 existing reserved word

Data Type Description Example Code

Integer
Positive and negative whole numbers, as
well as zero.

-35, -1, 0,
33, 100, 345

int

Floating Point
Decimal

Numeric values with decimal points (even
if the decimal part is zero).

-.123, 0.56, 3.0,
1000.07

float

String
A string of characters that can include
numbers, letters, or typed symbols.

“Counter
reached 4”,

“STOP”,
“time to eat!”

string

Boolean
True or False. Useful for expressing the
outcomes of comparisons.

true, false bool

Rules for Variable Types
• You must choose a data type that is appropriate for the value you want to store

The following is a list of data types most commonly used in ROBOTC:

Variables

ROBOTC

Reference

Variables • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Assignment and Usage Rules
Assignment of values to variables is pretty straightforward, as is the use of a variable in a
command where you wish its value to be used.

Rules for Variable Usage

• “Use” a variable simply by putting its name where you want its value to be used

• The current value of the variable will be used every time the variable appears

Examples:

Statement Description

motorPower = 75; Stores the value 75 in the variable
“motorPower”

lightVariable = SensorValue(lightSensor);
Stores the current sensor reading
of the sensor “lightSensor” in the

variable “lightVariable”

sum = variable1 + variable2;

Adds the value in “variable1”
to the value in “variable2”, and
stores the result in the variable

“sum”

average = (variable1 + variable2)/2;

Adds the value in “variable1”
and the value in “variable2”,

then divides the result by 2, and
stores the final resulting value in

“average”

count = count + 1;

Adds 1 to the current value of
“count” and places the result back
into “count” (effectively, increases

the value in “count” by 1)

int zero = 0;

Creates the variable x with an
initial value of 0 (combination
declaration and assignment

statement)

Rules for Assignment

• Values are assigned using the assignment operator = (not ==)

• Assigning a value to a variable that already has a value in it will overwrite the old value
 with the new one

• Math operators (+, -, *, /) can be used with assignment statements to perform calculations
 on the values before storing them

• A variable can appear in both the left and right hand sides of an assignment statement;
 this simply means that its current value will be used in calculating the new value

• Assignment can be done in the same line that a variable is declared
 (e.g. int x = 0; will both create the variable x and put an initial value of 0 in it)

Variables

ROBOTC

Reference

White Space© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

White Space

Program Without White Space

task main()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(2000);
 motor[motorC]=-100;
 motor[motorB]=-100;
 wait1Msec(4000);
}

Both programs will perform the same, however, the second uses white space to organize the code
to separate the program’s two main behaviors: moving forward and moving in reverse. In this
case, line breaks (returns) were used to vertically segment the tasks. Horizontal white space characters
like spaces and tabs are also important. Below, white space is used in the form of indentations to
indicate which lines are within which control structures (task main, while loop, if-else statement).

White Space is the use of spaces, tabs, and blank lines to visually organize code. Programmers
use White Space since it can group code into sensible, readable chunks without affecting how the
code is read by a machine. For example, a program that would run a robot forward for 2 seconds,
and then backward for 4 seconds, could look like either of these:

 task main()
{

 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(2000);

 motor[motorC]=-100;
 motor[motorB]=-100;
 wait1Msec(4000);

}

Program With White Space

Program Without White Space

task main()
{
while(true)
{
if(SensorValue(touch)==0)
{
motor[motorA]=100;
motor[motorC]=100;
}
else
{
motor[motorA]=-100;
motor[motorC]=-100;
}
}
}

Program With White Space

task main()
{
 while(true)
 {
 if(SensorValue(touch)==0)
 {
 motor[motorA]=100;
 motor[motorC]=100;
 }
 else
 {
 motor[motorA]=-100;
 motor[motorC]=-100;
 }
 }
}

ROBOTC

Reference

Robot Decision Making© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Branching

Going along with the idea that robots are able to break down conditions into truth values, we can
have robots perform a certain task depending on if the conditions are true, or false. This idea of
performing a task depending on the outcome of the condition is called branching.

Example:

Take, for instance, a robot that has an Ultrasonic sensor attached to it. If we want the robot to
move around in a room and avoid obstacles, we would tell it this:

While the Ultrasonic sensor doesn’t detect something close

Move forward

Using Boolean Algrebra, we can take a situtation where the robot would need to take more than
one condition into account, combine them with logical operators, and make a decision based on
the results of the conditions (See also Boolean Logic). The resulting values from the conditions are
called truth values. This essentially means that the conditions break down to whether or not the
condition is true or false.

Robot Decision Making

task main()
{
 while(condition)
 {
 if(condition)
 {
 // commands
 }
 else
 {
 // commands
 }
 }
}

ROBOTC

Reference

if/else Statement© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

if-else Statement

if(condition)
{
		 //	true-commands
}
else
{
		 //	false-commands
}

Below is the pseudocode outline of an if-else Statment.

 task	main()
{
	while(true)
	{
		 if(SensorValue(sonarSensor)>25)
			 {
			 		motor[motorC]=100;
			 		motor[motorB]=100;
			 }

			 else
			 {
		 	 motor[motorC]=0;		 	 	
		 	 motor[motorB]=0;		 							
				}
	}
}

An if-else Statement is one way you allow a computer to make a decision. With this command,
the program will check the (condition) and then execute one of two pieces of code, depending
on whether the (condition) is true or false.

Below is an example program containing an If/Else Statement.

This if-else Statement tells the robot to run both motors at 100% if the nearest object the Ultrasonic
Sensor detects is more than 25 centimeters away. If the sonar sensor detects an object closer than
25 centimeters, then the “else” portion of the code will be run and the robot will stop moving. The
outer while(true) loop makes the if-else statement run over and over forever.

(true) commands
Commands placed here will run
if the (condition) is true.

(false) commands
Commands placed here will run
if the (condition) is false.

(condition)
Either true or false (see Reference > Boolean Logic).

(true) commands
These commands run if
the (condition) is true.

(false) commands
These commands run if
the (condition) is false.

(condition)
true if the sensor reads over 25
false otherwise

ROBOTC

Reference

Functions© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

A function is a group of statements that are run as a single unit when the function is called
from another location, such as task main(). Commonly, each function will represent a specific
behavior in the program.

Functions offer a number of distinct advantages over basic step-by-step coding.

• They save time and space by allowing common behaviors to be written as functions, and then
 run together as a single statement (rather than re-typing all the individual commands).

• Separating behaviors into different functions allows your code to follow your planning more
 easily (one function per behavior or even sub-behavior).

• Through the use of parameters, multiple related (but not identical) tasks can be handled with
 a single, intuitive function.

Functions

void moveForward()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(1000);
}

task main()
{
 moveForward();
}

1. Declare Your Function
Declare the function by using the word “void”,
followed by the name you wish to give to the
function. It’s helpful to give the function a
name that reflects the behavior it will perform.

Within the function’s {curly braces}, write the
commands exactly as you would normally.
When the function is called, it will run the lines
between its braces in order, just like task main
does with the code between its own braces.

2. Call Your Function
Once your declare your function, it acts like a
new command in the language of ROBOTC.
To run the function, simply “call” it by name
– remember that its name includes the
parentheses – followed by a semicolon.

Using Functions

Functions must be created and then run separately. A function is created by “declaring” it,
and run by “calling” it.

ROBOTC

Reference

Functions© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Advanced Functions
Parameters

Parameters are a way of passing information into a function, allowing the function to run its
commands differently, depending on the values it is given. It may help to think of the parameters
as placeholders – all parameters must be filled in with real values when the function is called, so
in the places where a parameter appears, it will simply be replaced by its given value.

void forwardTime(int t)
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(t);
}

task main()
{
 forwardTime(3000);
}

1. Declare parameter
A parameter is declared in the same way that
a variable is (type then name) inside the
parentheses following the function name.

2. Use parameter
The parameter value behaves like a
“placeholder”. Whatever value is provided
for the parameter when the function is called
will appear here.

3. Call function with parameter
When the function is called, a value must be
provided within the parentheses to take the
place of the parameter inside the function.

 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(3000);

Substitution
The arrows in the illustration to the right show
the general “path” of the value from the place
where it is provided in the function call, to
where its value is substituted into the function.

The function will run as if the code read as it
does in the bottom box.

void forwardTime(int t)
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(t);
}

task main()
{
 forwardTime(3000);
}

ROBOTC

Reference

Functions© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

int squareOf(int t)
{
 int sq;
 sq = t * t;
 return sq;
}

task main()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(squareOf(100));
}

Advanced Functions
Return Values

Not all functions are declared “void”. Sometimes, you may wish to capture a mathematical
computation in a function, for instance, or perform some other task that requires you to get
information back out of the function at the end. The function will “return” a value, causing
it to behave as if the function call itself were a value in the line that called it.

int squareOf(int t)
{
 int sq;
 sq = t * t;
 return sq;
}

task main()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(squareOf(100));
}

1. Declare return type
Because the function will give a value back at
the end, it must be declared with a type other
than void, indicating what type of value it will
give.

2. Return value
The function must “return” a value. In
this case, it is returning the result of a
computation, the square of the parameter.

3. Function call becomes a value
The function call itself becomes a value
to the part of the program that calls it.
Here, it is acting as an integer value for the
wait1Msec command.

 wait1Msec(10000);

Substitution
The arrows in the illustration to the right show
the general “path” of the value as it is returned
and goes back into the main function.

The parameter 100 is used (as t in the function)
to calculate the value, but is not shown in the
arrows.

The function will run as if the code read as it
does in the bottom box.

ROBOTC

Reference

While Loop© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

While Loop

	while(condition)
	{
				//	repeated-commands
	}

Below is the pseudocode outline of a while loop.

The condition is true as long as
the rotation sensor detects less
than 360 degrees of rotation.

task	main()
{		 	 							
	while(nMotorEncoder[motorC]<360)
	{	
			motor[motorC]=100;
			motor[motorB]=100;
	}
}

Below is an example of a program using a While Loop.

A while loop is a structure within ROBOTC which allows a portion of code to be run over and over,
as long as a certain condition remains true.

While the condition is true, both
motors will receive 100% power.

This while loop runs as long as the rotation sensor detects less than 360° of spin. As long the
condition remains true, motor A and motor B are told to run at full power. When the condition
becomes false, i.e. the rotation sensor detects more than 360° of spin, the loop ends and the
robot goes on to the next line of code. In this case, the program ends.

Repeated commands
Commands placed here will run over and over as long
as the (condition) is true when the program checks at
the beginning of each pass through the loop.

(condition)
Either true or false (see Reference > Boolean Logic).

ROBOTC

Reference

Global Variables© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

When you create a variable, it can only be used inside the function or task where it was declared.
This can be a problem when you need to use the same variable in several different places –
for example, a function you made, and task main.

Global Variables

int timeValue;

void changeValue()
{
 timeValue = 6000;
}

task main()
{
 timeValue = 2000;
 changeValue();
 wait1Msec(timeValue);
}

Scope
Variables exist only within certain boundaries, for example, only within the functions
where they are declared. Scope is a definition of these boundaries: how broadly
applicable (or “visible”) a value or variable is.

Scope exists to prevent conflicts between functions with similarly-named variables,
and (more importantly) to keep variables from different functions from accidentally
interfering with each other, or even with themselves if the same function is run more
than once.

In general, the rule is that a variable can only be used within the task or function
where it is declared, including task main. If you try to use a variable in location
outside its scope, ROBOTC will give you an error that no such variable exists,
because the program at that point cannot “see” it.

Global Variables
One very rough way to get around the limitations of scope in a program is to declare
a variable as global. A global variable is declared outside any functions or tasks, and
therefore typically appears at the very top of a program.

Because they are declared at a level broader than any task or function, all functions and
tasks can “see” global variables, and they do not lose their value even after a function or
task ends. This is both a strength and a liability.

1. Declare global variable
The global variable is declared outside any
tasks or functions, allowing them all to see it.

2. Variable is “visible” inside functions
The global variable can be used and changed
inside functions.

3. Variable is “visible” inside tasks
The global variable can be used and changed
inside tasks such as task main.

A Hint of Trouble
How long will this program wait at the end, 2000
or 6000ms? Because both the function and the
task main were able to modify the value of this
variable, it is more difficult to tell what its value is
by the time it is used. As your program gets more
complex, excessive use of global variables may
lead to more and more confusion.

ROBOTC

Reference

PID Speed Control© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Simply setting a motor’s power level does not guarantee anything about how fast the motor
will actually turn. External forces such as friction and gravity constantly interefere with its
performance – the same motor power can produce wildly different results on a flat surface
compared to a slope. PID (motor) speed control is designed to ensure that a robot’s motors
actually turn at the rate you expect them to, even if there is interference from the environment.
Effectively, it allows you to issue motor speed commands instead of just motor power commands.

PID Speed Control

How it Works

GOAL of PID speed control: Make the actual motor speed match the desired motor speed.

When activated, the PID algorithm will use a motor’s built-in rotation sensors to monitor its actual
speed. The actual speed is compared to the desired speed, and the PID algorithm will calculate
necessary power changes to get the actual speed equal to the desired speed. This robot applies the
change and runs with the adjusted power level.

The algorithm then starts over again by comparing the new actual speed to the desired speed.
Based on the improvement (or lack thereof) that it sees, it will make further refinements to the
motor’s power. This creates a cycle where the motor’s speed is constantly being checked against the
desired speed, and the power level is always set based on what is needed to achieve the right result.

For more information, see the lesson Principles of PID in the Improved Movement section of the
Movement unit.

Name Calculates…

P Proportional Adjustment based on the current difference
between the actual and desired speeds
(referred to as the “error”)

I Integral Adjustment based on many recent errors

D Derivative Adjustment based on rate of change of errors

Using PID in ROBOTC

To enable PID Speed Control in ROBOTC, simply add this command for each motor:

nMotorPIDSpeedCtrl[motorX] = mtrSpeedReg;

PID is now automatically applied to any motor[] commands issued after this point in the program.

Where the Name Comes From

The mathematical formula that the PID algorithm uses to calculate the necessary adjustment is
based on three parameters, called the Proportional, Integral, and Derivative adjustment factors.

This weighted sum of these three adjustment factors constitutes the power adjustment that is
applied to the motor power to produce the (hopefully) correct actual speed.

ROBOTC

Reference

Pseudocode & Flow Charts • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Pseudocode is a shorthand notation for programming which uses a combination of informal
programming structures and verbal descriptions of code. Emphasis is placed on expressing
the behavior or outcome of each portion of code rather than on strictly correct syntax (it does still
need to be reasonable, though).

In general, pseudocode is used to outline a program before translating it into proper syntax.
This helps in the initial planning of a program, by creating the logical framework and sequence
of the code. An additional benefit is that because pseudocode does not need to use a specific
syntax, it can be translated into different programming languages and is therefore somewhat
universal. It captures the logic and flow of a solution without the bulk of strict syntax rules.

Below is some pseudocode written for a program which moves as long as a touch sensor is not
pressed, but stops and turns to the right if its sonar detects an object less than 20cm away.

Pseudocode & Flow Charts

task main()
{
 while (touch sensor is not pressed)
 {
 Robot runs forward

 if (sonar detects object < 20 cm away)
 {
 Robot stops

 Robot turns right
 }
 }
}

Some intact syntax
The use of a while loop
in the pseudocode is fitting
because the way we read a
while loop is very similar to
the manner in which it
is used in the program.

This pseudocode example includes elements of both programming language, and the English
language. Curly braces are used as a visual aid for where portions of code need to be placed
when they are finally written out in full and proper syntax.

Descriptions
There are no actual motor
commands in this section of
the code, but the pseudocode
suggests where the commands
belong and what they need
to accomplish.

ROBOTC

Reference

Pseudocode & Flow Charts • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Pseudocode & Flow Charts
Flow Charts are a visual representation of program flow. A flow chart normally uses
a combination of blocks and arrows to represent actions and sequence. Blocks typically
represent actions. The order in which actions occur is shown using arrows that point from
statement to statement. Sometimes a block will have multiple arrows coming out of it,
representing a step where a decision must be made about which path to follow.

Decision

Action

Start and End symbols are represented as rounded rectangles,
usually containing the word “Start” or “End”, but can be more
specific such as “Power Robot Off” or “Stop All Motors”.

Actions are represented as rectangles and act as basic
commands. Examples: “wait1Msec(1000)”; “increment
LineCount by 1”; or “motors full ahead”.

Decision blocks are represented as diamonds. These typically
contain Yes/No questions. Decision blocks have two or more
arrows coming out of them, representing the different paths that
can be followed, depending on the outcome of the decision.
The arrows should always be labeled accordingly.

To the right is the flow chart of a program
which instructs a robot to run forward as long
as its touch sensor is not pressed. When the
touch sensor is pressed the motors stop and
the program ends.

To read the flow chart:

Start at the “Start” block, and follow its
arrow down to the “Decision” block.

The decision block checks the status of
the touch sensor against two possible
outcomes: the touch sensor is either
pressed or not pressed.

If the touch sensor is not pressed, the
program follows the “No” arrow to the
action block on the right, which tells the
motors to run forward. The arrow leading
out of that block points back up and
around, and ends back at the Decision
block. This forms a loop!

The loop may end up repeating many
times, as long as the Touch Sensor
remains unpressed.

If the touch sensor is pressed, the
program follows the “Yes” arrow and
stops the motors, then ends the program.

•

•

•

•

•

Start

Is the Touch
Sensor

pressed?

End

Run both
motors forward

Stop
motors

Yes

No

Start/Stop

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Welcome to programming in ROBOTC.

In this lesson you will become familiar with the basic movement commands of that are available
in ROBOTC. We’ll be using these commands to perform behaviors such as a forward movement,
turning, reverse, and other standard motor movements.

Make sure that you have the Tankbot built, and have downloaded both firmware and the sample
program as shown in the videos.

Introduction

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Moving Forward

In this lesson you will learn about the commands used in the sample program,
how to use motor commands in order to make the robot move forward, and how
to control the amount of time a basic movement behavior runs.

In the last video section, you downloaded a sample program that made the robot turn.
Why was the robot turning? Let’s look at the code more closely, and, using the code,
create a Forward behavior with the robot.

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Moving Forward Program Dissection

Below is a line by line explanation of the sample program:

Line 1: task main()
Every ROBOTC program contains a
task main(). The line “task main()”
marks the beginning of your program’s
main body.

Line 3: motor[motorC]

This is a statement, a command given to
ROBOTC. This one directs the robot to turn
on motorC with a power level of 100.

Lines 2 & 7: Braces

Task main forms a structure which
starts with an opening curly brace,
and ends with a closing curly brace.

In this section you will learn what each command does in the sample program. You
will also learn how to modify the code to have your robot move forward for 3 seconds.

task main()
 {

 motor[motorC] = 100;
 wait1Msec(3000);

 }

1
2
3
4
5
6
7

task main()
 {

 motor[motorC] = 100;
 wait1Msec(3000);

 }

1
2
3
4
5
6
7

task main()
 {

 motor[motorC] = 100;
 wait1Msec(3000);

 }

1
2
3
4
5
6
7

Example:

motor [motor location] = motor power level;

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Moving Forward Program Dissection (cont.)

Line 5 is a “Wait For” statement. Line 5 contains the
ROBOTC reserved word “wait1Msec.” An “msec” is a
millisecond or one thousandth of a second. 3000 “msec”
is 3000 thousandths or three seconds. Consequently,
ROBOTC lets the motor run for three seconds.

Line 4: wait1Msec

task main()
 {

 motor[motorC] = 100;
 wait1Msec(3000);

 }

1
2
3
4
5
6
7

Let’s modify the code to have the robot move forward for 3 seconds.

Save your program with a new name. Go to “File”, “Save As”.

Save it as “Movement”.

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Add this motor command to have motor A go forward with 100 power. Type here just
as you would type in a word processor. ROBOTC will automatically color the words you
type as it recognizes them.

Now, download the program to the robot.

Go to “Robot”, “Compile and Download Program”.

Moving Forward Program Dissection

task main()
 {

 motor[motorA] = 100;
 motor[motorC] = 100;
 wait1Msec(3000);

 }

1
2
3
4
5
6
7
8

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Moving Forward Program Dissection

When your program is done downloading some program debug
windows will appear. Press the “Start” button to run your robot.

Pressing the “Start” button will run the
program on your robot. Your robot

will begin to move immediately!

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Modify line 6 so that the number inside the parentheses following “wait1Msec”
is 2000 instead of 3000.

Go to “Robot”, “Compile and Download”.

When the program is done downloading, click the “Start” button to run the
program on your robot. Observe the robot’s behavior and continue.

Moving Forward Timing

In this lesson you will modify the previous program to have the robot move forward
for 2 seconds instead of 3.

task main()
 {

 motor[motorA] = 100;
 motor[motorC] = 100;
 wait1Msec(2000);

 }

1
2
3
4
5
6
7
8

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Speed and Direction

In this lesson you will continue to modify the “Movement” program by manipulating
the motor powers, and experimenting with motor direction.

Continue on by learning how to manipulate your motor power, and consequently,
motor direction. Power level allows your robot to go faster, slower, and stop by setting
the percent of power that the motor is using.

ROBOTC

RCX • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Your robot brakes automatically at the end of every program, but should you ever need
to stop it in the middle of a program, simply use 0 power:

Add motor commands for both motor A and motor C. Instead of 100 power, use a
power level of 0.

Go to “Robot”, “Compile and Download Program”.

When the program is done downloading, click the “Start” button to run the program on your robot.

Speed and Direction Braking

In this lesson, you will learn how to use a 0 power level to stop your robot.

v
task main()
 {

 motor[motorA] = 100;
 motor[motorC] = 100;
 wait1Msec(2000);

 motor[motorA] = 0;
 motor[motorC] = 0;

 }

1
2
3
4
5
6
7
8
9

10
11

This section of code tells ROBOTC to set the
power level of motorA and motorC to 0. This
tells the robot to stop moving.

ROBOTC

RCX • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Speed and Direction Half Motor Power

In this exercise you will learn about the power level range of the RCX. You may not
always want to move at full speed. Knowing how to adjust your motor’s power level
may prove to be very useful at times when precise movement is critical.

The power level of the motor for forward direction ranges from 0 to 100.
What power level would be half power for the RCX?

 100 / 2 = 50

50 is the value that represents half motor power.

Change the motor power levels to be 50 instead of 100.

Now, compile and download the program.

v
task main()
 {

 motor[motorA] = 50;
 motor[motorC] = 50;
 wait1Msec(2000);

 motor[motorA] = 0;
 motor[motorC] = 0;

 }

1
2
3
4
5
6
7
8
9

10
11

Run forward at half power
for 2 seconds

Stop both motors
(from the previous section)

ROBOTC

RCX • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Click the “Start” button to run the program on your robot.

Notice how the robot moves forward slower than the first time it moved forward. In fact during
the first foward movement, the robot moved twice as fast. You can adjust the level to be anything
between 0 to 100, but what about the negative values? Move on to find out.

Speed and Direction Half Motor Power (cont.)

ROBOTC

RCX • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

You know how to manipulate the value of the motors to go at half power and to stop, now what
about negative power values? Adjust the power level so that it’s back to full power forward.

Now add commands to have the power level of motor A to be -100, and motor C to be 100. Have
the robot do this for .8 seconds. Stopping the motors after each movement can help them to be
more precise.

Speed and Direction Turn and Reverse Motor Direction

In this lesson, you will learn what negative motor powers do.

v
task main()
 {

 motor[motorA] = 100;
 motor[motorC] = 100;
 wait1Msec(2000);

 motor[motorA] = 0;
 motor[motorC] = 0;

 }

1
2
3
4
5
6
7
8
9

10
11

This section of the code tells ROBOTC to
run motor A with full power reverse and
motor C with full power forward.

v
task main()
 {

 motor[motorA] = 100;
 motor[motorC] = 100;
 wait1Msec(2000);

 motor[motorA] = 0;
 motor[motorC] = 0;

 motor[motorA] = -100;
 motor[motorC] = 100;
 wait1Msec(800);

 motor[motorA] = 0;
 motor[motorC] = 0;

 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

This section of the code creates a
forward movement for 2 seconds
with full motor power.

A manual motor stop between other
maneuvers can sometimes help to make
those movements more defined and precise.

ROBOTC

RCX • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® RCX

RCX

Speed and Direction Turn and Reverse Motor Direction (cont.)

Compile and download the program.

Click the “Start” button to run the program on your robot.

© 2005 CMU Robotics Academy

Tankbot
Building Instructions

© 2005 CMU Robotics Academy

Tankbot Parts Page

RCX

2x2 Brick

1x16 TECHNIC Brick

1x8 TECHNIC Brick

8-Stud Axle

Caterpillar Belt

Full Bushing

A

B

C

D

E

F

G

1

4

4

4

4

2

12

-

-

-

-

-

-

-

1 1/2 Connector Peg

Connector Peg

Connector Peg w/Friction

Rim for Belt

24-Tooth Gear Wheel

16-Tooth Gear Wheel

Connecting Lead

H

I

J

K

L

M

N

4

4

4

4

4

2

2

-

-

-

-

-

-

-

Gear Motor

2x8 Plate w/Holes

2x4 Plate w/Holes

1x4 Plate

O

P

Q

R

2

8

2

2

-

-

-

-

© 2005 CMU Robotics Academy

Tankbot Page 1

1

3

2

4

Begin with two 1x16 TECHNIC bricks. (C)

Insert four black connector pegs w/friction. (J) Add two 1x16 TECHNIC bricks. (C)

© 2005 CMU Robotics Academy

Tankbot Page 2

Add two 24-tooth gear wheels. (L) Add four full bushings. (G)

Insert four 8-stud axles. (E)

5

7

6

8

Add six full bushings (for cross axles). (G)

© 2005 CMU Robotics Academy

Tankbot Page 3

9

11

10

12

Add four 2x8 plates w/holes (P) on top.

Add two 1x4 plates. (R) Add two 2x4 plates w/holes. (Q)

Add two 2x8 plates w/holes (P) underneath.

© 2005 CMU Robotics Academy

Tankbot Page 4

13

15

14

16

Add a 24-tooth gear wheel (L) to each motor axle.

Add four 2x2 bricks. (B) Add two 2x8 plates w/holes. (P)

Add two gear motors. (O)

© 2005 CMU Robotics Academy

Tankbot Page 5

17

19

18

20

Add four connector pegs (I):
Two on the left side and two on the right side.

Add four 1x8 TECHNIC bricks. (D)

Attach an RCX (A) to the chassis.

Add four 1 1/2 connecting pegs (H) to the RCX:
Two on the left and two on the right.

© 2005 CMU Robotics Academy

Tankbot Page 6

21

23

22

24

Add full bushings (G) to the two front axles to stop the
rims from falling off. Insert a 16-tooth gear wheel (M)
inside the rim on each rear axle.

Add two caterpillar belts. (F) Add connecting leads (N) to connect the motors to the RCX.

Add four white rims for belts (K): One per axle.

Be sure to connect the leads as shown below. If the cables are
arranged differently you might change the polarity of the motors.

Tankbot is now complete.

ROBOTC

Reference

Random Numbers© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sometimes a behavior will call for a robot to use a random number in one of its measurements.
This may seem strange, but randomness can actually be helpful to a robot in avoiding patterns of
movement that would otherwise get it “stuck”.

Random Numbers

task main()
{
 motor[motorC]=100;
 motor[motorB]=100;
 wait1Msec(random(5000));
}

Wait for a random time
The number of milliseconds
that the wait1Msec command
will wait for will be a random
number between 0 and 5000.

This program runs the robot
forward for a random amount
of time up to 5 seconds.

Using Random Numbers

Random numbers is pretty straightforward. Wherever you want the random number to appear,
simply add the code random(maxNumber). Each time the line is run, a random (whole) number
between 0 and the number you entered will fill in the spot where the random() command is.

4000 + random(1000) Minimum value (as shown: 4000-5000)
Adding the random value “on top of” a
base number lets you get random numbers
between a minimum (the base number) and a
maximum (base+maximum random) value.

Using Other Numbers

If you need something other than whole numbers between zero and something, you may need
to be a little creative...

random(100)/100 Percent (as shown: 0-100% in 1% increments)
Dividing your random value by its own maximum
value normalizes the value so that it always falls
between 0 and 1.

srand(123);
wait1Msec(random(5000));

Set random seed
The srand command sets the random
number seed for this robot. Run with the
same seed, “random” numbers will always be
generated in the same sequence.

Seeds

Computers can’t be truly random. Instead, they try to use a hard-to-predict series of numbers
based off a “seed” value. Under certain circumstances, you may want to set the seed manually.

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	motor[motorC]=	100;				//motorC	-	Full	speed	forward														
	motor[motorB]=	-100;			//motorB	-	Full	speed	reverse

	motor[motorC]=	100;					//motorC	-	Full	speed	forward														
	motor[motorB]=	100;					//motorB	-	Full	speed	forward

	bMotorFlippedMode[motorC]=	1;	//Flip	motor	C’s	direction
	motor[motorC]=	100;									//motorC	-	Full	speed	reverse														
	motor[motorB]=	100;									//motorA	-	Full	speed	forward

bFloatDuringInactiveMotorPWM	=	false;		
									//motors	will	break	when	power	is	set	to	0				

Motors

Motor control and some fine-tuning commands.

motor[output]	=	power;
This turns the referenced NXT motor output either on or off and simultaneously sets it’s power level.
The NXT has 3 motor outputs: motorA,	motorB,	and	motorC. The NXT supports power
levels from -100 (full reverse) to 100 (full forward). A power level of 0 will cause the motors to stop.

bMotorFlippedMode[output]	=	1;	(or	0;)
When set equal to one, this code reverses the rotation of the referenced motor. Once set, the
referenced motor will be reversed for the entire program (or until bMotorFlippedMode[] is set
equal to zero).

This is useful when working with motors that are mounted in opposite directions, allowing the
programmer to use the same power level for each motor.

There are two settings: 0 is normal, and 1 is reverse.

bFloatDuringInactiveMotorPWM = true;	(or	false;)
This is used to set whether the motors on the NXT will float or brake when there is no power applied.

There are two settings:

false - motors will brake when inactive

true - motors will float when inactive

Before:

After:

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

nMotorPIDSpeedCtrl[motorC]	=	mtrSpeedReg;
		 //PID	control	on	motorC	enabled
nMotorPIDSpeedCtrl[motorB]	=	mtrSpeedReg;
		 //PID	control	on	motorB	enabled
motor[motorC]	=	50;	//motorC	adjusts	to	spin	at	50%	speed...
																				//...even	when	friction	varies
motor[motorB]	=	50;	//motorB	adjusts	to	spin	at	50%	speed...
																				//...even	when	friction	varies
wait1Msec(4000);				//wait	for	4	seconds

nMotorPIDSpeedCtrl[output]	=	mtrSpeedReg;
This line of code enables the PID control for the specified motor output. The PID control adjusts
the actual amount of power sent to a motor to match the desired value, specified in the program.
Each motor that needs to be regulated must be referenced using an instance of this code.

The NXT has 3 motor outputs: motorA,	motorB,	and	motorC.

nSyncedMotors	=	synchBC;	//sets	motorC	to	imitate	motorB

nSyncedMotors	=	synch_type;
This line of code synchronizes the power level of one motor to another, specified in the synch_type.

The common configurations are: synchAB,	synchAC,	synchBA,	synchBC,	
synchCA,	and	synchCB.

The first capital letter of the synch_type refers to the “Master” motor and the second capital letter
refers to the “Slave” motor. The “Slave” motor basis it’s behavior after the “Master” motor.

nSyncedMotors	=	synchBC;	//sets	motorC	to	imitate	motorB
nSyncedTurnRatio	=	100;
motor[motorB]	=	50;						//both	motorB	and	motorC	move...
																									//...forward	at	half	power
wait1Msec(4000);									//wait	for	4	seconds

nSyncedTurnRatio	=	percentage;
This line of code establishes the relationship between the motors referened in the nSyncedMotors
command. Percentage values range from -100 to 100, with the “Slave” motor doing the exact
opposite of the “Master” motor (-100), to the “Slave” perfectly imitating the “Master” (100).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	motor[motorA]=	100;					//motorA	-	full	speed	forward
	wait1Msec(2000);								//Wait	2	seconds
	motor[motorA]=	0;							//motorA	-	off

	int	x;									//Integer	variable	x
	x=time1[T1];			//Assigns	x=value	of	Timer	1	(1/1000	sec.)

	motor[motorA]=	100;					//motorA	-	full	speed	forward
	wait10Msec(200);								//Wait	2	seconds
	motor[motorA]=	0;							//motorA	-	off

	int	x;									//Integer	variable	x
	x=time10[T1];		//Assigns	x=value	of	Timer	1	(1/100	sec.)

Timing

The NXT allows you to use Wait commands to insert delays into your program. It also supports
Timers, which work like stopwatches; they count time, and can be reset when you want to start or
restart tracking time elapsed.

wait1Msec(wait_time);
This code will cause the robot to wait a specified number of milliseconds before executing the
next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/1000th of a second).
Maximum wait_time is 32768, or 32.768 seconds.

wait10Msec(wait_time);
This code will cause the robot to wait a specified number of hundredths of seconds before
executing the next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/100th of
a second). Maximum wait_time is 32768, or 327.68 seconds.

time1[timer]
This code returns the current value of the referenced timer as an integer. The resolution for “time1”
is in milliseconds (1 = 1/1000th of a second).

The maximum amount of time that can be referenced is 32.768 seconds (~1/2 minute)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

time10[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time10” is in hundredths of a second (1 = 1/100th of a second).

The maximum amount of time that can be referenced is 327.68 seconds (~5.5 minutes)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	int	x;										//Integer	variable	x
	x=time100[T1];		//assigns	x=value	of	Timer	1	(1/10	sec.)

	ClearTimer(T1);	//Clear	Timer	#1

time100[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time100” is in tenths of a second (1 = 1/10th of a second).

The maximum amount of time that can be referenced is 3276.8 seconds (~54 minutes)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

ClearTimer(timer);
This resets the referenced timer back to zero seconds.

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

Sensors

Sensor commands for configuration and usage are listed below. Most sensor setup should be
done through the Robot > Motors and Sensors Setup menu for best results.

SetSensorType(sensor_input,sensor_type);
This function is used to manually set the mode of a specific input port to a specific type of sensor.
We recommend, however, that you use the “Motor and Sensors Setup” wizard in ROBOTC.

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4 and supports 8 different types of sensors:

Sensor Type Type Description Range of Values

sensorTouch RCX &NXT Digital 0 to 1

sensorTemperature RCX Analog Temperature 0.0 t 100.0

sensorReflection RCX Analog Percentage 0 to 100

sensorRotation RCX Digital with Directional counter -32768 to 32768

sensorLightActive NXT Analog, Percentage (Light
Sensor with LED)

0 to 100

sensorLightInactive NXT Analog, Percentage (Light
Sensor w/out LED)

0 to 100

sensorSoundDB NXT Analog, Percentage 0 to 100

sensorSONAR NXT Distance, CM 0 to 255

		SetSensorType(S1,sensorTouch);	//Input	1	set	as	a	touch	sensor

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

SetSensorType(S1,	sensorTouch);//Input	1	set	as	touch	sensor	
if(SensorValue(S1)	==	1)	 //If	the	touch	sensor	is	pressed
{
		motor[motorA]	=	100;					//motorA	-	full	speed	forward
}

while(nMotorEncoder[motorC]<100)//While	motorC	encoder	has	
{																														//spun	less	than	100	degrees
		motor[motorC]	=	100;					//motorC	-	full	speed	forward
		motor[motorB]	=	100;					//motorB	-	full	speed	forward
}		

nMotorEncoder[motorA]=0;		//motorA	encoder	is	set	to
		

SetSensorType(S1,sensorRotation);//Input	1	set	to	
																																	//Rotation	Sensor.
ClearSensorValue(S1);												//Reset	Input	#1	back	to	0

PlayTone(220,	599);	//Plays	a	220hz	tone	for	1/2	second

SensorValue(sensor_input)
SensorValue is used to reference the integer value of the specified sensor port.
Values will correspond to the type of sensor set for that port.

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4

nMotorEncoder[motor]
This code is used to access the internal encoder from the NXT’s motors. An integer value is
returned with the number of degrees the motor has traveled (1 = 1 degree).

You can also assign the value of nMotorEncoder to 0 to reset the encoder.

ClearSensorValue(sensor_input);
This function resets the value of the referenced sensor port back to zero. This is only neccessary
with specific sensor types that retain their values (e.g. Encoder).

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4

Sounds

The NXT can generate tones or play stored waveform sound data.

PlayTone(frequency,	duration);
This plays a sound from the NXT internal speaker at a specific frequency (1 = 1 hertz) for
a specific length (1 = 1/100th of a second).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

PlaySoundTone(soundUpwardTones);//Plays	“Upward	Tones”	sound

• soundLowBuzz
• soundFastUpwardTones
• soundShortBlip
• soundException

PlaySoundFile(Whoops.rso);	//Plays the file “Whoops.rso”

int	x	=	1; //declares first variable
int	y	=	2;			//declares	second	variable
int	z	=	3;			//declares	third	variable
nxtDisplayStringAt(0,31,”Test	%d	%d	%d”	,x,y,z);			
					 	 		//Displays	“Test	123”	

eraseDisplay();	//Clears	NXT	screen	of	all	images	and	text

PlaySound(sound_name);
Plays a sound effect from the NXT internal library. Requires a sound name to be passed to play
the sound. The sound names are:

• soundBlip
• soundBeepBeep
• soundDownwardTones									
• soundUpwardTones

PlaySoundFile(file_name);
This function is used to play a sound file that is on the NXT. NXT sounds files have the .rso extension.

LCD Display
Commands for the NXT’s LCD Display.

nxtDisplayStringAt(xPosition,	yPosition,	text,	var1,	var2,	var3);
Displays a text line on the NXT’s LCD screen. Up to three variables are passable to the function.

xPosition - This integer value is the number of pixels away from the left of the display that you
want your string to be printed at.
yPosition - This integer value is the number of pixels away from the bottom of the display that
you want your string to be printed at. Leaving this value at 0 will cause any characters to be cut off.
text - The text parameter is what shows up on the screen. This will be a string enclosed in quotes
up to 16 characters. You may also display up to 3 variables in this parameter by adding %d up to
three times. Remember that you can only display 16 total characters, so the value of the variables
will take up some of those 16 characters.
var1,	var2,	var3 - These (optional) parameters define which variables will be displayed to
the screen and each must correspond to a separate %d within the text parameter.

eraseDisplay();
Clears the NXT’s LCD screen of all text and GUI images.

ROBOTC

Reference

Reserved Words • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

srand(16);			//Assign	16	as	the	value	of	the	seed

random(100);			//Generates	a	number	between	0	and	100	

while(time1[T1]<5000)//While	the	timer	is	less	than	5	sec...
{			
	motor[motorA]=	100;//...motorA	runs	at	100%															
}

if(sensorValue(touch)	==1)//the	touch	sensor	is	used	as...
{																									//...the	condition
	motor[motorA]=	0;			//if	it’s	pressed	motorA	stops															
}
else																									
{
		motor[motorA]=	100;	//if	it’s	not	pressed	motorA	runs
}

Miscellaneous

Miscellaneous useful commands that are not part of the standard C language.

srand(seed);
Defines the integer value of the “seed” used in the random() command to generate a random
number. This command is optional when using the random() command, and will cause the same
sequence of numbers to be generated each time that the program is run.

random(value);
Generates random number between 0 and the number specified in its parenthesis.

Control Structures

Program control structures in ROBOTC enable a program to control its flow outside of the typical
left to right and top to bottom fashion.

task	main(){}
Creates a task called “main” needed in every program. Task main is responsible for holding the
code to be executed within a program.

while(condition){}
Used to repeat a {section of code} while a certain (condition) remains true. Infinite while loops can
be created by ensuring that the condition is always true, e.g. “1==1” or “true”.

if(condition){}/else{}
With this command, the program will check the (condition) within the if statement’s parentheses
and then execute one of two sets of code. If the (condition) is true, the code inside the if statement’s
curly braces will be run. If the (condition) is false, the code inside the else statement’s curly braces
will be run instead.

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

int	x;			//Declares	the	integer	variable	x
x	=	765;	//Stores	765	inside	of	x

Data Types

Different types of information require different types of variables to hold them.

int
This data type is used to store integer values ranging from -32768 to 32768.

The code above can also be written:

int	x	=	765;		//Declares	the	integer	variable	x	and...
		 	 	 			//...initializes	it	to	a	value	of	765

long	x;							//Declares	the	long	integer	variable	x
x	=	76543210;	//Stores	76543210	inside	of	x

long
This data type is used to store integer values ranging from -2147483648 to 2147483648.

float x;							//Declares the float variable x
x	=	77.932;			//Stores	77.932	inside	of	x

float
This data type is used to store decimal or floating point numbers.

bool	x;							//Declares	the	bool	variable	x
x	=	0;	 			//Sets	x	to	0

bool
This data type is used to store boolean values of either 1 (also true) or 0 (also false).

char	x;							//Declares	the	char	variable	x
x	=	‘J‘;						//Stores	the	character	J	inside	of	x

char
This data type is used to store a single character, specified between a set of single quotes.

string	x;				 					//Declares	the	long	integer	variable	x
x	=	“ROBOTC	rocks!”;	//Stores	ROBOTC	rocks!	inside	of	x

string
This data type is used to store a string of characters, such as a word or sentence,
specified between a set of double quotes.

ROBOTC

Reference

Running a Program© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

1.	Make	sure	your	NXT	is	turned on.	Press	the	orange		 	
	 button	on	the	front	of	the	NXT	if	it	isn’t.

2.	Make	sure	your	robot	is	plugged in	to	the	computer	via		
	 the	USB	cable.	The	program	will	be	loaded	onto	the	robot		
	 through	this	connection.

3.		Click	“Robot”	on	the	top	menu	bar	of	the	ROBOTC		 	
	 window,	and	select	“Download Program”	or	“Compile
 and Download Program”	(they’re	effectively	the	same;		
	 which	one	you	see	depends	on	whether	you	have	made		
	 changes	since	the	last	time	you	compiled).

4.	You	may	be	prompted	to	save	your	program.	If	so,	save	it		
	 in	the	same	directory	as	your	other	programs.

5.	 If	there	are	errors	in	your	code	the	compiler	will	identify		
	 them	for	you	and	you	will	need	to	correct	them	before	a		
	 successful	download	can	be	completed.

Downloading	places	your	program	on	the	robot	to	be	run	on	
command.	You	can	run	the	program	in	two	different	ways.

Run attached	
If	your	robot	is	still	connected	to	your	computer	you	
can	run	the	program	which	was	just	downloaded	by	
clicking	“Start”	in	the	“Program	Debug”	window	which	
automatically	appears	upon	download.	This	will	run	your	
program	and	because	the	robot	is	still	connected	to	the	
computer	via	its	cable,	you	can	obtain	live	variable	and	
sensor	feedback	by	using	such	debug	windows	as	“Global	
Variables”	and	“Devices.”

Run Independently	
If	you	want	to	run	the	program	while	the	robot	is	not	
connected	just	remove	the	cable	once	the	program	has	
been	downloaded.	On	the	NXT	Brick	select	“My Files”	
by	pressing	the	orange	button,	then	with	the	same	button	
select	“Software Files”.	You	will	be	presented	with	a	
list	of	all	programs	currently	stored	on	the	NXT.	Scroll	
through	using	the	left	and	right	arrow	keys	and	find your
program.	It	will	have	the	same	name	as	the	program	you	
saved	on	your	computer.	When	you	have	located	it,	press	
the	orange	button	once	to	select	it,	and	then	once	more	
to	run	it.

•

•

Running a Program
Once	a	program	has	been	successfully	written,	it	needs	to	be	given	to	the	robot	to	run.		
The	following	steps	will	guide	you	through	the	process	of	downloading	your	program	to	the	robot,	
and	then	running	it	remotely	or	connected	to	your	computer.

ROBOTC

Reference

Sense Plan Act© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sense Plan Act (SPA)

task main()
{
 while(true)
 {
 if(SensorValue(touchSensor)==0)
 {
 motor[motorC]=100;
 motor[motorB]=100;
 }

 else
 {
 motor[motorC]=100;
 motor[motorB]=-100;
 wait1Msec(1500);
 }
 }
}

Sense, Plan, Act was an early robot control procedure commonly abbreviated SPA. Today we
use its fundamental concepts to remind us of the three critical capabilities that every robot
must have in order to operate effectively:

SENSE: The robot needs the ability to sense important things about its environment, like
the presence of obstacles or navigation aids. What information does your robot need
about its surroundings, and how will it gather that information?

PLAN:	 The	robot	needs	to	take	the	sensed	data	and	figure	out	how	to	respond appropriately
to it, based on a pre-existing strategy. Do you have a strategy? Does your program
determine the appropriate response, based on that strategy and the sensed data?

ACT: Finally, the robot must actually act to carry out the actions that the plan calls for.
Have you built your robot so that it can do what it needs to, physically? Does it
actually do it when told?

SENSE: The robot uses a Touch Sensor to sense whether it has collided with an object.

PLAN: The overall strategy for this robot is to run forward unless something is in its way,
which it will detect using the Touch Sensor. If the Touch Sensor is unpressed, the
motors will be run forward; if the Touch Sensor is pressed, the robot will turn away
from the obstacle. This is all captured in the program, which runs on the robot,
reading the sensor’s data and issuing the appropriate motor commands.

ACT: The robot acts by moving its motors in response to the given motor commands, which
are given in combinations that produce forward movement and turns as appropriate.

Where are S, P, and A in this program?

ROBOTC

Reference

Switch Case© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The switch-case command is a decision-making statement which chooses commands to run
from a list of separate “cases”. A single “switch” value is selected and evaluated, and different
sets of code are run based on which “case” the value matches.

Switch Case

switch(switch-value)
{
 case 1st-value:
 // match-1st-commands
 break;

 case 2nd-value:
 // match-2nd-commands
 break;

 default:
 // default-commands
}

Below is the pseudocode outline of a switch-case Statement.

case value
A possible match for the switch value. If this value matches
the switch value, the code immediately following it runs.

switch value
The value which be checked for a match with any cases.

break; command
Marks the end of each case’s command statements.

default case
If the switch value does not match any of the given case
values, the “default” case will run.

case commands
The commands that run if this case successfully matched

ROBOTC

Reference

Switch Case© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Switch Case

task main()
{
 int turnVar=0;

 while(true)
 {
 if(SensorValue(touch1)==1)
 turnVar=1;

 if(SensorValue(touch2)==1)
 turnVar=2;

 switch (turnVar)
 {
 case 1:
 motor[motorC]=-100;
 motor[motorB]=100;
 turnVar=0;
 break;

 case 2:
 motor[motorC]=100;
 motor[motorB]=-100;
 turnVar=0;
 break;

 default:
 motor[motorC]=100;
 motor[motorB]=100;
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

The touch sensors are used to set the value of turnVar in the program below. The switch-case
statement is then used to determine what to do, based on its value. No sensors pressed will leave
turnVar with a value of 0, and the robot will run the “default” case and go straight. Pressing
touch1 will give turnVar a value of 1, and make case 1 run (left turn). Pressing touch2 makes
turnVar 2, which makes case 2 (right turn) run. Both turns reset turnVar to 0 before ending, to
allow fresh input on the next pass of the loop.

Switch statement
The “switch” line designates the value that will be
evaluated to see if it matches any of the case values.

Case statement
The first line of a case includes the word “case” and
a value. If the value of the “switch” variable (turnVar)
matches this case value (1), the code following the
“case” line will run.

Commands
These commands belong to the case “1”, and will
run if the value of the “switch” variable (turnVar) is
equal to 1.

Break statement
Each “case” ends with the command break;

Default case statement
If the “switch” value above did not match any of the
cases presented by the time it reaches this point, the
“default” case will run.

ROBOTC

Reference

Behaviors© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Basic Behaviors
Example: Turn on Motor C at 100% power

At the most basic level, everything in a program
must be broken down into tiny behaviors that
your robot can understand and perform directly.
In ROBOTC, these are behaviors the size of
single statements, like turning on a single
motor, or resetting a timer.

Simple Behaviors
Example: Move forward for 3 seconds

Simple behaviors are small, bite-size behaviors
that allow your robot to perform a simple, yet

A behavior is anything your robot does: turning on a single motor is a behavior, moving
forward is a behavior, tracking a line is a behavior, navigating a maze is a behavior. There are
three main types of behaviors that we are concerned with: basic behaviors, simple behaviors,
and complex behaviors.

Behaviors

significant task, like moving forward for a certain amount of time. These are perhaps
the most useful behaviors to think about, because they are big enough that you can describe
useful actions with them, but small enough that you can program them easily from basic
ROBOTC commands.

Complex Behaviors
Example: Follow a defined path through an entire maze

These are behaviors at the highest levels, such as navigating an entire maze. Though
they may seem complicated, one nice property of complex behaviors is that they are always
composed of smaller behaviors. If you observe a complex behavior, you can always break it
down into smaller and smaller behaviors until you eventually reach something you recognize.

task main()
{
 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(2000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(2000);
}

Complex
behavior
This code makes
the robot move
around a corner.

Simple
behavior
This code
makes the
robot go
forward for
2 seconds at
50% power.

Basic
behavior
This code
turns the left
motor on at
50% power.

ROBOTC

Reference

Behaviors© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sometimes it can be hard to tell whether a behavior is “simple” or “complex”. Some programs
are so complex they need multiple layers of simple behaviors before they reach the basic ones!

“Basic,” “Simple,” and “Complex” are categories of behaviors which are meant to help
you think about the structure of programs. They are points of reference in the world of
behaviors. Use these distinctions to help you, but don’t worry if your “complex” behavior
suddenly becomes a “simple” part of your next program... just pick the point of reference
that’s most useful for what you need.

Behaviors
Composition and Analysis

Perhaps the most important idea in behaviors is that they can be built up or broken down
into other behaviors. Complex behaviors, like going through a maze, can always be broken
down into smaller, simpler behaviors. These in turn can be broken down further and further
until you reach simple or basic behaviors that you recognize and can program.

By looking back at the path of behaviors you broke down, you can also see how the smaller
behaviors should be programmed so that they combine back together, and produce the
larger behavior. In this way, analyzing a complex behavior maps out the pieces that need
to be programmed, then allows you to program them, and put them together to build the
final product.

Go forward for 3 seconds

Turn on left motorTurn on right motorWait 3 seconds
Turn off left motorTurn off right motor

Follow the path to reach the goal

Go forward 3 secondsTurn left 90º
Go forward 5 secondsTurn right 90º
Go forward 2 secondsTurn right 90º
Go forward 2 seconds Turn left 90º

Reverse left motorTurn on right motorWait 0.8 secondsTurn off left motorTurn off right motor

Go forward for 5 seconds

Turn on left motorTurn on right motorWait 5 seconds

1. Turn on left motor

2. Turn on right motor

3. Wait 3 seconds

4. Turn off left motor

5. Turn off right motor

6. Reverse left motor

7. Turn on right motor

8. Wait 0.8 seconds

9. Turn off left motor

10. Turn off right motor

11. Turn on left motor

12. Turn on right motor

13. Wait 5 seconds
...

Large behavior Smaller behaviors ROBOTC-ready behaviors

Step by step
1. Start with a large-

scale behavior that
solves the problem.

2. Break it down into
smaller pieces. Then
break the smaller
pieces down as well.

3. Repeat until you
have behaviors that
are small enough
for ROBOTC to
understand.

ROBOTC

Reference

Synching Motors© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

To use Motor Synchronization in ROBOTC, simply type in this command to enable synching:

nSyncedMotors = synchBC;

This enabled B to be the Master motor, and C to be the Slave. You can also use “synchAB”,
“synchAC”, “synchCB”, “synchCA”, and “synchBA”.

Then you must set the ratio:

nSyncedTurnRatio = -100;

This sets the Slave to Follow what the Master’s motor speed is by -100%. In other words, it goes the
opposite direction of the Master motor.

Now simply set the master motor power, and the slave motor will begin running in exactly the
opposite direction.

motor[motorB] = 100;

Synching Motors

Below are examples of a Slave Motor’s speed if the Master Motor had a speed of 100 and 60.

Master Motor Speed 100 60
Turn Ratio 100% 50% 0% -25% -100% 100% 50% 0% -25% -100%

Slave Motor Speed 100 50 0 -25 -100 60 30 0 -15 -60

	 Slave Motor Power Formula
 Slave Motor Power = Master Motor Power x Turn Ratio*
 * Turn Ratio in this equation is equal to its value in the program divided by 100.

There are times when a robot’s movement must be perfectly straight. In other words, the wheels
need to be moving at the exact same speed so that the robot isn’t inadvertently turning off its path.
To achieve this high level of accuracy the programmer can synchronize (sync or synch) the motors
so that when the motors are not perfectly aligned, the program makes adjustments to their power
to bring them together again.

In ROBOTC, synchronization is accomplished by declaring pairs of motors to keep together.
One of the two motors is chosen as the master, and the second as its slave. This does not affect
the ability or “willingness” of either motor to stay synchronized with the other, it is merely used to
establish the speed relationship between them. The master motor will be assigned a desired speed,
and the slave motor’s speed will be defined as a percentage of the master motor’s speed. The
percentage, known as the Turn Ratio, ranges from -100 to 100.

1. To have your slave motor run in the opposite direction, make your Turn Ratio negative.

2. The slave motor can be set to any power less than or equal to the master,
 using the proper Turn Ratio.

3. Because the limit of the Turn Ratio is 100% of the Master Motor’s power, the motor which
 requires the higher power setting must always be the Master Motor.

The equation used to calculate the Slave Motor Speed is given below.

ROBOTC

Boolean Logic • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reference

Boolean Logic

(Conditions)

ROBOTC control structures that make decisions about which pieces of code to run, such as while
loops and if-else conditional statements, always depend on a (condition) to make their decisions.
ROBOTC (conditions) are always Boolean statements. They are always either true or false at
any given moment. Try asking yourself the same question the robot does – for example, whether the
value of the Light Sensor is greater than 45 or not. Pick any number you want for the Light Sensor
value. The statement “the Light Sensor’s value is greater than 45” will still either be true, or be false.

Condition Ask yourself... Truth value
1==1 Is 1 equal to 1? True, always

0==1 Is 0 equal to 1? False, always

Condition Ask yourself... Truth value

SensorValue(lightSensor) > 45 Is the value of the Light
Sensor greater than 45?

True, if the current
value is more than
45 (for example, if

it is 50).

False, if the
current value is

not more than 45
(for example, if it

is 40).

Truth Values

Robots don’t like ambiguity when making decisions. They need to know, very clearly, which choice
to make under what circumstances. As a consequence, their decisions are always based on the
answers to questions which have only two possible answers: yes or no, true or false. Statements
that can be only true or false are called Boolean statements, and their true-or-false value is
called a truth value.

Fortunately, many kinds of questions can be phrased so that their answers are Boolean (true/false).
Technically, they must be phrased as statements, not questions. So, rather than asking whether
the sky is blue and getting an answer yes or no, you would state that “the sky is blue” and then
find out the truth value of that statement, true (it is blue) or false (it is not blue).

Note that the truth value of a statement is only applicable at the time it is checked. The sky could
be blue one minute and grey the next. But regardless of which it is, the statement “the sky is blue”
is either true or false at any specific time. The truth value of a statement does not depend on
when it is true or false, only whether it is true or false right now.

Some (conditions) have the additional benefit of ALWAYS being true, or ALWAYS being false.
These are used to implement some special things like “infinite” loops that will never end (because
the condition to make them end can never be reached!).

ROBOTC

Reference

Boolean Logic • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reference

Boolean Logic

Comparison Operators

Comparisons (such as the comparison of the light sensor’s value against the number 45) are at the
core of the decision-making process. A well-formed comparison typically uses one of a very specific
set of operators, the “comparison operations” which generate a true or false result. Here are some
of the most common ones recognized by ROBOTC.

ROBOTC
Symbol Meaning Sample comparison Result

== “is equal to”

50 == 50 true
50 == 100 false
100 == 50 false

!= “is not equal
to”

50 != 50 false
50 != 100 true
100 != 50 true

< “is less than”

50 < 50 false
50 < 100 true
100 < 50 false

<= “is less than
or equal to”

50 <= 50 true
50 <= 100 true
50 <= 0 false

> “is greater
than”

50 > 50 false
50 > 100 false
100 > 50 true

>= Greater than
or equal to

50 >= 50 true
50 >= 100 false
100 >= 50 true

Evaluating Values

The “result” of a comparison is either true or false, but the robot takes it one step further. The
program will actually substitute the true or false value in, where the comparison used to be. Once
a comparison is made, it not only is true or false, it literally becomes true or false in the program.

if (50 > 45) ...

if (true) ...

ROBOTC

Reference

Boolean Logic • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reference

Boolean Logic

Logical Operators

Some (conditions) need to take more than one thing into account. Maybe you only want the robot
to run if the traffic light is green AND there’s no truck stopped in front of it waiting to turn. Unlike
the comparison operators, which produce a truth value by comparing other types of values (is one
number equal to another?), the logical operators are used to combine multiple truth values into
one single truth value. The combined result can then be used as the (condition).

Example:
Suppose the value of a Light Sensor named lightSensor is 50, and at the same time, the value of a
Touch Sensor named touchSensor is 1 (pressed).

The Boolean statement (lightSensor > 45) && (touchSensor == 1) would be evaluated...

ROBOTC
Symbol Meaning Sample comparison Result

&& “AND”

true && true true
true && false false
false && true false
false && false false

|| “OR”

true || true true
true || false true
false || true true
false || false false

(50 > 45) && (1 == 1)

true && true

true

Use in Control Structures

“Under the hood” of all the major decision-making control structures is a simple check for the
Boolean value of the (condition). The line if (SensorValue(touchSensor) == 1)...
may read easily as “if the touch sensor is pressed, do...”, but the robot is really looking for
if(true) or if(false). Whether the robot runs the “if true” part of the if-else structure or
the “else” part, depends solely on whether the (condition) boils down to true or false.

if (50 > 45) ...

if (true) ...

ROBOTC

Reference

Thresholds© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

If you look at this image, it shows an NXT using an Ultrasonic sensor. The threshold in this case
is 25cm. We can create behaviors that tell the robot to go forward, until Ultrasonic sensor detects
something closer than 25cm.

The threshold is just used to determine at which point the robot should be peforming a
different behavior.

Line Detection (Light Sensor thresholds)

To find a dark line on a light surface, you must first calculate a threshold to distinguish light from
dark. One recommended method is:

1. Meausre the Light Sensor value of the light surface

2. Measure the Light Sensor value of the dark surface

3. Add the two light sensor readings together

4. Divide by two to find the average, and use it as your threshold

In equation form:

Thresholds are values that set a cutoff in a range of values, so that even if there are many
possibilities, the value eventually falls above the threshold, or below the threshold. Using
thresholds allows you to perform certain behaviors depending on where a certain value
(usually a sensor value) falls in relation to the threshold.

Thresholds

Light Value + Dark value

2
= Threshold value

