
ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	motor[motorC]= 100; //motorC - Full speed forward
	motor[motorB]= -100; //motorB - Full speed reverse

	motor[motorC]= 100; //motorC - Full speed forward
	motor[motorB]= 100; //motorB - Full speed forward

 bMotorFlippedMode[motorC]= 1; //Flip motor C’s direction
 motor[motorC]= 100; //motorC - Full speed reverse
 motor[motorB]= 100; //motorA - Full speed forward

bFloatDuringInactiveMotorPWM = false;
 //motors will break when power is set to 0

Motors

Motor control and some fine-tuning commands.

motor[output] = power;
This turns the referenced NXT motor output either on or off and simultaneously sets it’s power level.
The NXT has 3 motor outputs: motorA, motorB, and motorC. The NXT supports power
levels from -100 (full reverse) to 100 (full forward). A power level of 0 will cause the motors to stop.

bMotorFlippedMode[output] = 1; (or 0;)
When set equal to one, this code reverses the rotation of the referenced motor. Once set, the
referenced motor will be reversed for the entire program (or until bMotorFlippedMode[] is set
equal to zero).

This is useful when working with motors that are mounted in opposite directions, allowing the
programmer to use the same power level for each motor.

There are two settings: 0 is normal, and 1 is reverse.

bFloatDuringInactiveMotorPWM = true; (or false;)
This is used to set whether the motors on the NXT will float or brake when there is no power applied.

There are two settings:

false - motors will brake when inactive

true - motors will float when inactive

Before:

After:

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
		 //PID control on motorC enabled
nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;
		 //PID control on motorB enabled
motor[motorC] = 50; //motorC adjusts to spin at 50% speed...
 //...even when friction varies
motor[motorB] = 50; //motorB adjusts to spin at 50% speed...
 //...even when friction varies
wait1Msec(4000); //wait for 4 seconds

nMotorPIDSpeedCtrl[output] = mtrSpeedReg;
This line of code enables the PID control for the specified motor output. The PID control adjusts
the actual amount of power sent to a motor to match the desired value, specified in the program.
Each motor that needs to be regulated must be referenced using an instance of this code.

The NXT has 3 motor outputs: motorA, motorB, and motorC.

nSyncedMotors = synchBC; //sets motorC to imitate motorB

nSyncedMotors = synch_type;
This line of code synchronizes the power level of one motor to another, specified in the synch_type.

The common configurations are: synchAB, synchAC, synchBA, synchBC,
synchCA, and synchCB.

The first capital letter of the synch_type refers to the “Master” motor and the second capital letter
refers to the “Slave” motor. The “Slave” motor basis it’s behavior after the “Master” motor.

nSyncedMotors = synchBC; //sets motorC to imitate motorB
nSyncedTurnRatio = 100;
motor[motorB] = 50; //both motorB and motorC move...
 //...forward at half power
wait1Msec(4000); //wait for 4 seconds

nSyncedTurnRatio = percentage;
This line of code establishes the relationship between the motors referened in the nSyncedMotors
command. Percentage values range from -100 to 100, with the “Slave” motor doing the exact
opposite of the “Master” motor (-100), to the “Slave” perfectly imitating the “Master” (100).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

 motor[motorA]= 100; //motorA - full speed forward
 wait1Msec(2000); //Wait 2 seconds
 motor[motorA]= 0; //motorA - off

 int x; //Integer variable x
 x=time1[T1]; //Assigns x=value of Timer 1 (1/1000 sec.)

 motor[motorA]= 100; //motorA - full speed forward
 wait10Msec(200); //Wait 2 seconds
 motor[motorA]= 0; //motorA - off

 int x; //Integer variable x
 x=time10[T1]; //Assigns x=value of Timer 1 (1/100 sec.)

Timing

The NXT allows you to use Wait commands to insert delays into your program. It also supports
Timers, which work like stopwatches; they count time, and can be reset when you want to start or
restart tracking time elapsed.

wait1Msec(wait_time);
This code will cause the robot to wait a specified number of milliseconds before executing the
next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/1000th of a second).
Maximum wait_time is 32768, or 32.768 seconds.

wait10Msec(wait_time);
This code will cause the robot to wait a specified number of hundredths of seconds before
executing the next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/100th of
a second). Maximum wait_time is 32768, or 327.68 seconds.

time1[timer]
This code returns the current value of the referenced timer as an integer. The resolution for “time1”
is in milliseconds (1 = 1/1000th of a second).

The maximum amount of time that can be referenced is 32.768 seconds (~1/2 minute)

The NXT has 4 internal timers: T1, T2, T3, and T4

time10[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time10” is in hundredths of a second (1 = 1/100th of a second).

The maximum amount of time that can be referenced is 327.68 seconds (~5.5 minutes)

The NXT has 4 internal timers: T1, T2, T3, and T4

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

 int x; //Integer variable x
 x=time100[T1]; //assigns x=value of Timer 1 (1/10 sec.)

	ClearTimer(T1); //Clear Timer #1

time100[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time100” is in tenths of a second (1 = 1/10th of a second).

The maximum amount of time that can be referenced is 3276.8 seconds (~54 minutes)

The NXT has 4 internal timers: T1, T2, T3, and T4

ClearTimer(timer);
This resets the referenced timer back to zero seconds.

The NXT has 4 internal timers: T1, T2, T3, and T4

Sensors

Sensor commands for configuration and usage are listed below. Most sensor setup should be
done through the Robot > Motors and Sensors Setup menu for best results.

SetSensorType(sensor_input,sensor_type);
This function is used to manually set the mode of a specific input port to a specific type of sensor.
We recommend, however, that you use the “Motor and Sensors Setup” wizard in ROBOTC.

The NXT has 4 sensor inputs: S1, S2, S3, and S4 and supports 8 different types of sensors:

Sensor Type Type Description Range of Values

sensorTouch RCX &NXT Digital 0 to 1

sensorTemperature RCX Analog Temperature 0.0 t 100.0

sensorReflection RCX Analog Percentage 0 to 100

sensorRotation RCX Digital with Directional counter -32768 to 32768

sensorLightActive NXT Analog, Percentage (Light
Sensor with LED)

0 to 100

sensorLightInactive NXT Analog, Percentage (Light
Sensor w/out LED)

0 to 100

sensorSoundDB NXT Analog, Percentage 0 to 100

sensorSONAR NXT Distance, CM 0 to 255

 SetSensorType(S1,sensorTouch); //Input 1 set as a touch sensor

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

SetSensorType(S1, sensorTouch);//Input 1 set as touch sensor
if(SensorValue(S1) == 1)	 //If the touch sensor is pressed
{
 motor[motorA] = 100; //motorA - full speed forward
}

while(nMotorEncoder[motorC]<100)//While motorC encoder has
{ //spun less than 100 degrees
 motor[motorC] = 100; //motorC - full speed forward
 motor[motorB] = 100; //motorB - full speed forward
}

nMotorEncoder[motorA]=0; //motorA encoder is set to

SetSensorType(S1,sensorRotation);//Input 1 set to
 //Rotation Sensor.
ClearSensorValue(S1); //Reset Input #1 back to 0

PlayTone(220, 599); //Plays a 220hz tone for 1/2 second

SensorValue(sensor_input)
SensorValue is used to reference the integer value of the specified sensor port.
Values will correspond to the type of sensor set for that port.

The NXT has 4 sensor inputs: S1, S2, S3, and S4

nMotorEncoder[motor]
This code is used to access the internal encoder from the NXT’s motors. An integer value is
returned with the number of degrees the motor has traveled (1 = 1 degree).

You can also assign the value of nMotorEncoder to 0 to reset the encoder.

ClearSensorValue(sensor_input);
This function resets the value of the referenced sensor port back to zero. This is only neccessary
with specific sensor types that retain their values (e.g. Encoder).

The NXT has 4 sensor inputs: S1, S2, S3, and S4

Sounds

The NXT can generate tones or play stored waveform sound data.

PlayTone(frequency, duration);
This plays a sound from the NXT internal speaker at a specific frequency (1 = 1 hertz) for
a specific length (1 = 1/100th of a second).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

PlaySoundTone(soundUpwardTones);//Plays “Upward Tones” sound

• soundLowBuzz
• soundFastUpwardTones
• soundShortBlip
• soundException

PlaySoundFile(Whoops.rso); //Plays the file “Whoops.rso”

int x = 1; //declares first variable
int y = 2; //declares second variable
int z = 3; //declares third variable
nxtDisplayStringAt(0,31,”Test %d %d %d” ,x,y,z);
 		 	 //Displays “Test 123”

eraseDisplay(); //Clears NXT screen of all images and text

PlaySound(sound_name);
Plays a sound effect from the NXT internal library. Requires a sound name to be passed to play
the sound. The sound names are:

• soundBlip
• soundBeepBeep
• soundDownwardTones
• soundUpwardTones

PlaySoundFile(file_name);
This function is used to play a sound file that is on the NXT. NXT sounds files have the .rso extension.

LCD Display
Commands for the NXT’s LCD Display.

nxtDisplayStringAt(xPosition, yPosition, text, var1, var2, var3);
Displays a text line on the NXT’s LCD screen. Up to three variables are passable to the function.

xPosition - This integer value is the number of pixels away from the left of the display that you
want your string to be printed at.
yPosition - This integer value is the number of pixels away from the bottom of the display that
you want your string to be printed at. Leaving this value at 0 will cause any characters to be cut off.
text - The text parameter is what shows up on the screen. This will be a string enclosed in quotes
up to 16 characters. You may also display up to 3 variables in this parameter by adding %d up to
three times. Remember that you can only display 16 total characters, so the value of the variables
will take up some of those 16 characters.
var1, var2, var3 - These (optional) parameters define which variables will be displayed to
the screen and each must correspond to a separate %d within the text parameter.

eraseDisplay();
Clears the NXT’s LCD screen of all text and GUI images.

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

srand(16); //Assign 16 as the value of the seed

random(100); //Generates a number between 0 and 100

while(time1[T1]<5000)//While the timer is less than 5 sec...
{
	motor[motorA]= 100;//...motorA runs at 100%
}

if(sensorValue(touch) ==1)//the touch sensor is used as...
{ //...the condition
	motor[motorA]= 0; //if it’s pressed motorA stops
}
else
{
 motor[motorA]= 100; //if it’s not pressed motorA runs
}

Miscellaneous

Miscellaneous useful commands that are not part of the standard C language.

srand(seed);
Defines the integer value of the “seed” used in the random() command to generate a random
number. This command is optional when using the random() command, and will cause the same
sequence of numbers to be generated each time that the program is run.

random(value);
Generates random number between 0 and the number specified in its parenthesis.

Control Structures

Program control structures in ROBOTC enable a program to control its flow outside of the typical
left to right and top to bottom fashion.

task main(){}
Creates a task called “main” needed in every program. Task main is responsible for holding the
code to be executed within a program.

while(condition){}
Used to repeat a {section of code} while a certain (condition) remains true. Infinite while loops can
be created by ensuring that the condition is always true, e.g. “1==1” or “true”.

if(condition){}/else{}
With this command, the program will check the (condition) within the if statement’s parentheses
and then execute one of two sets of code. If the (condition) is true, the code inside the if statement’s
curly braces will be run. If the (condition) is false, the code inside the else statement’s curly braces
will be run instead.

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

int x; //Declares the integer variable x
x = 765; //Stores 765 inside of x

Data Types

Different types of information require different types of variables to hold them.

int
This data type is used to store integer values ranging from -32768 to 32768.

The code above can also be written:

int x = 765; //Declares the integer variable x and...
		 	 	 //...initializes it to a value of 765

long x; 	 //Declares the long integer variable x
x = 76543210; //Stores 76543210 inside of x

long
This data type is used to store integer values ranging from -2147483648 to 2147483648.

float x; 	 //Declares the float variable x
x = 77.932; //Stores 77.932 inside of x

float
This data type is used to store decimal or floating point numbers.

bool x; 	 //Declares the bool variable x
x = 0;	 //Sets x to 0

bool
This data type is used to store boolean values of either 1 (also true) or 0 (also false).

char x; 	 //Declares the char variable x
x = ‘J‘; //Stores the character J inside of x

char
This data type is used to store a single character, specified between a set of single quotes.

string x; 	 //Declares the long integer variable x
x = “ROBOTC rocks!”; //Stores ROBOTC rocks! inside of x

string
This data type is used to store a string of characters, such as a word or sentence,
specified between a set of double quotes.

