
ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	motor[motorC]=	100;				//motorC	-	Full	speed	forward														
	motor[motorB]=	-100;			//motorB	-	Full	speed	reverse

	motor[motorC]=	100;					//motorC	-	Full	speed	forward														
	motor[motorB]=	100;					//motorB	-	Full	speed	forward

	bMotorFlippedMode[motorC]=	1;	//Flip	motor	C’s	direction
	motor[motorC]=	100;									//motorC	-	Full	speed	reverse														
	motor[motorB]=	100;									//motorA	-	Full	speed	forward

bFloatDuringInactiveMotorPWM	=	false;		
									//motors	will	break	when	power	is	set	to	0				

Motors

Motor control and some fine-tuning commands.

motor[output]	=	power;
This turns the referenced NXT motor output either on or off and simultaneously sets it’s power level.
The NXT has 3 motor outputs: motorA,	motorB,	and	motorC. The NXT supports power
levels from -100 (full reverse) to 100 (full forward). A power level of 0 will cause the motors to stop.

bMotorFlippedMode[output]	=	1;	(or	0;)
When set equal to one, this code reverses the rotation of the referenced motor. Once set, the
referenced motor will be reversed for the entire program (or until bMotorFlippedMode[] is set
equal to zero).

This is useful when working with motors that are mounted in opposite directions, allowing the
programmer to use the same power level for each motor.

There are two settings: 0 is normal, and 1 is reverse.

bFloatDuringInactiveMotorPWM = true;	(or	false;)
This is used to set whether the motors on the NXT will float or brake when there is no power applied.

There are two settings:

false - motors will brake when inactive

true - motors will float when inactive

Before:

After:

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

nMotorPIDSpeedCtrl[motorC]	=	mtrSpeedReg;
		 //PID	control	on	motorC	enabled
nMotorPIDSpeedCtrl[motorB]	=	mtrSpeedReg;
		 //PID	control	on	motorB	enabled
motor[motorC]	=	50;	//motorC	adjusts	to	spin	at	50%	speed...
																				//...even	when	friction	varies
motor[motorB]	=	50;	//motorB	adjusts	to	spin	at	50%	speed...
																				//...even	when	friction	varies
wait1Msec(4000);				//wait	for	4	seconds

nMotorPIDSpeedCtrl[output]	=	mtrSpeedReg;
This line of code enables the PID control for the specified motor output. The PID control adjusts
the actual amount of power sent to a motor to match the desired value, specified in the program.
Each motor that needs to be regulated must be referenced using an instance of this code.

The NXT has 3 motor outputs: motorA,	motorB,	and	motorC.

nSyncedMotors	=	synchBC;	//sets	motorC	to	imitate	motorB

nSyncedMotors	=	synch_type;
This line of code synchronizes the power level of one motor to another, specified in the synch_type.

The common configurations are: synchAB,	synchAC,	synchBA,	synchBC,	
synchCA,	and	synchCB.

The first capital letter of the synch_type refers to the “Master” motor and the second capital letter
refers to the “Slave” motor. The “Slave” motor basis it’s behavior after the “Master” motor.

nSyncedMotors	=	synchBC;	//sets	motorC	to	imitate	motorB
nSyncedTurnRatio	=	100;
motor[motorB]	=	50;						//both	motorB	and	motorC	move...
																									//...forward	at	half	power
wait1Msec(4000);									//wait	for	4	seconds

nSyncedTurnRatio	=	percentage;
This line of code establishes the relationship between the motors referened in the nSyncedMotors
command. Percentage values range from -100 to 100, with the “Slave” motor doing the exact
opposite of the “Master” motor (-100), to the “Slave” perfectly imitating the “Master” (100).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	motor[motorA]=	100;					//motorA	-	full	speed	forward
	wait1Msec(2000);								//Wait	2	seconds
	motor[motorA]=	0;							//motorA	-	off

	int	x;									//Integer	variable	x
	x=time1[T1];			//Assigns	x=value	of	Timer	1	(1/1000	sec.)

	motor[motorA]=	100;					//motorA	-	full	speed	forward
	wait10Msec(200);								//Wait	2	seconds
	motor[motorA]=	0;							//motorA	-	off

	int	x;									//Integer	variable	x
	x=time10[T1];		//Assigns	x=value	of	Timer	1	(1/100	sec.)

Timing

The NXT allows you to use Wait commands to insert delays into your program. It also supports
Timers, which work like stopwatches; they count time, and can be reset when you want to start or
restart tracking time elapsed.

wait1Msec(wait_time);
This code will cause the robot to wait a specified number of milliseconds before executing the
next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/1000th of a second).
Maximum wait_time is 32768, or 32.768 seconds.

wait10Msec(wait_time);
This code will cause the robot to wait a specified number of hundredths of seconds before
executing the next instruction in a program. “wait_time” is an integer vlaue (where 1 = 1/100th of
a second). Maximum wait_time is 32768, or 327.68 seconds.

time1[timer]
This code returns the current value of the referenced timer as an integer. The resolution for “time1”
is in milliseconds (1 = 1/1000th of a second).

The maximum amount of time that can be referenced is 32.768 seconds (~1/2 minute)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

time10[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time10” is in hundredths of a second (1 = 1/100th of a second).

The maximum amount of time that can be referenced is 327.68 seconds (~5.5 minutes)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

	int	x;										//Integer	variable	x
	x=time100[T1];		//assigns	x=value	of	Timer	1	(1/10	sec.)

	ClearTimer(T1);	//Clear	Timer	#1

time100[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time100” is in tenths of a second (1 = 1/10th of a second).

The maximum amount of time that can be referenced is 3276.8 seconds (~54 minutes)

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

ClearTimer(timer);
This resets the referenced timer back to zero seconds.

The NXT has 4 internal timers: T1,	T2,	T3,	and	T4

Sensors

Sensor commands for configuration and usage are listed below. Most sensor setup should be
done through the Robot > Motors and Sensors Setup menu for best results.

SetSensorType(sensor_input,sensor_type);
This function is used to manually set the mode of a specific input port to a specific type of sensor.
We recommend, however, that you use the “Motor and Sensors Setup” wizard in ROBOTC.

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4 and supports 8 different types of sensors:

Sensor Type Type Description Range of Values

sensorTouch RCX &NXT Digital 0 to 1

sensorTemperature RCX Analog Temperature 0.0 t 100.0

sensorReflection RCX Analog Percentage 0 to 100

sensorRotation RCX Digital with Directional counter -32768 to 32768

sensorLightActive NXT Analog, Percentage (Light
Sensor with LED)

0 to 100

sensorLightInactive NXT Analog, Percentage (Light
Sensor w/out LED)

0 to 100

sensorSoundDB NXT Analog, Percentage 0 to 100

sensorSONAR NXT Distance, CM 0 to 255

		SetSensorType(S1,sensorTouch);	//Input	1	set	as	a	touch	sensor

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

SetSensorType(S1,	sensorTouch);//Input	1	set	as	touch	sensor	
if(SensorValue(S1)	==	1)	 //If	the	touch	sensor	is	pressed
{
		motor[motorA]	=	100;					//motorA	-	full	speed	forward
}

while(nMotorEncoder[motorC]<100)//While	motorC	encoder	has	
{																														//spun	less	than	100	degrees
		motor[motorC]	=	100;					//motorC	-	full	speed	forward
		motor[motorB]	=	100;					//motorB	-	full	speed	forward
}		

nMotorEncoder[motorA]=0;		//motorA	encoder	is	set	to
		

SetSensorType(S1,sensorRotation);//Input	1	set	to	
																																	//Rotation	Sensor.
ClearSensorValue(S1);												//Reset	Input	#1	back	to	0

PlayTone(220,	599);	//Plays	a	220hz	tone	for	1/2	second

SensorValue(sensor_input)
SensorValue is used to reference the integer value of the specified sensor port.
Values will correspond to the type of sensor set for that port.

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4

nMotorEncoder[motor]
This code is used to access the internal encoder from the NXT’s motors. An integer value is
returned with the number of degrees the motor has traveled (1 = 1 degree).

You can also assign the value of nMotorEncoder to 0 to reset the encoder.

ClearSensorValue(sensor_input);
This function resets the value of the referenced sensor port back to zero. This is only neccessary
with specific sensor types that retain their values (e.g. Encoder).

The NXT has 4 sensor inputs: S1,	S2,	S3,	and	S4

Sounds

The NXT can generate tones or play stored waveform sound data.

PlayTone(frequency,	duration);
This plays a sound from the NXT internal speaker at a specific frequency (1 = 1 hertz) for
a specific length (1 = 1/100th of a second).

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

PlaySoundTone(soundUpwardTones);//Plays	“Upward	Tones”	sound

• soundLowBuzz
• soundFastUpwardTones
• soundShortBlip
• soundException

PlaySoundFile(Whoops.rso);	//Plays the file “Whoops.rso”

int	x	=	1; //declares first variable
int	y	=	2;			//declares	second	variable
int	z	=	3;			//declares	third	variable
nxtDisplayStringAt(0,31,”Test	%d	%d	%d”	,x,y,z);			
					 	 		//Displays	“Test	123”	

eraseDisplay();	//Clears	NXT	screen	of	all	images	and	text

PlaySound(sound_name);
Plays a sound effect from the NXT internal library. Requires a sound name to be passed to play
the sound. The sound names are:

• soundBlip
• soundBeepBeep
• soundDownwardTones									
• soundUpwardTones

PlaySoundFile(file_name);
This function is used to play a sound file that is on the NXT. NXT sounds files have the .rso extension.

LCD Display
Commands for the NXT’s LCD Display.

nxtDisplayStringAt(xPosition,	yPosition,	text,	var1,	var2,	var3);
Displays a text line on the NXT’s LCD screen. Up to three variables are passable to the function.

xPosition - This integer value is the number of pixels away from the left of the display that you
want your string to be printed at.
yPosition - This integer value is the number of pixels away from the bottom of the display that
you want your string to be printed at. Leaving this value at 0 will cause any characters to be cut off.
text - The text parameter is what shows up on the screen. This will be a string enclosed in quotes
up to 16 characters. You may also display up to 3 variables in this parameter by adding %d up to
three times. Remember that you can only display 16 total characters, so the value of the variables
will take up some of those 16 characters.
var1,	var2,	var3 - These (optional) parameters define which variables will be displayed to
the screen and each must correspond to a separate %d within the text parameter.

eraseDisplay();
Clears the NXT’s LCD screen of all text and GUI images.

ROBOTC

Reference

Reserved Words • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

srand(16);			//Assign	16	as	the	value	of	the	seed

random(100);			//Generates	a	number	between	0	and	100	

while(time1[T1]<5000)//While	the	timer	is	less	than	5	sec...
{			
	motor[motorA]=	100;//...motorA	runs	at	100%															
}

if(sensorValue(touch)	==1)//the	touch	sensor	is	used	as...
{																									//...the	condition
	motor[motorA]=	0;			//if	it’s	pressed	motorA	stops															
}
else																									
{
		motor[motorA]=	100;	//if	it’s	not	pressed	motorA	runs
}

Miscellaneous

Miscellaneous useful commands that are not part of the standard C language.

srand(seed);
Defines the integer value of the “seed” used in the random() command to generate a random
number. This command is optional when using the random() command, and will cause the same
sequence of numbers to be generated each time that the program is run.

random(value);
Generates random number between 0 and the number specified in its parenthesis.

Control Structures

Program control structures in ROBOTC enable a program to control its flow outside of the typical
left to right and top to bottom fashion.

task	main(){}
Creates a task called “main” needed in every program. Task main is responsible for holding the
code to be executed within a program.

while(condition){}
Used to repeat a {section of code} while a certain (condition) remains true. Infinite while loops can
be created by ensuring that the condition is always true, e.g. “1==1” or “true”.

if(condition){}/else{}
With this command, the program will check the (condition) within the if statement’s parentheses
and then execute one of two sets of code. If the (condition) is true, the code inside the if statement’s
curly braces will be run. If the (condition) is false, the code inside the else statement’s curly braces
will be run instead.

ROBOTC

Reference

Reserved Words • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Reserved Words

int	x;			//Declares	the	integer	variable	x
x	=	765;	//Stores	765	inside	of	x

Data Types

Different types of information require different types of variables to hold them.

int
This data type is used to store integer values ranging from -32768 to 32768.

The code above can also be written:

int	x	=	765;		//Declares	the	integer	variable	x	and...
		 	 	 			//...initializes	it	to	a	value	of	765

long	x;							//Declares	the	long	integer	variable	x
x	=	76543210;	//Stores	76543210	inside	of	x

long
This data type is used to store integer values ranging from -2147483648 to 2147483648.

float x;							//Declares the float variable x
x	=	77.932;			//Stores	77.932	inside	of	x

float
This data type is used to store decimal or floating point numbers.

bool	x;							//Declares	the	bool	variable	x
x	=	0;	 			//Sets	x	to	0

bool
This data type is used to store boolean values of either 1 (also true) or 0 (also false).

char	x;							//Declares	the	char	variable	x
x	=	‘J‘;						//Stores	the	character	J	inside	of	x

char
This data type is used to store a single character, specified between a set of single quotes.

string	x;				 					//Declares	the	long	integer	variable	x
x	=	“ROBOTC	rocks!”;	//Stores	ROBOTC	rocks!	inside	of	x

string
This data type is used to store a string of characters, such as a word or sentence,
specified between a set of double quotes.

