
Greetings Roboticists,

These days, robotics and intelligent systems are found everywhere– smart cars, smart houses, smart
buildings, smart phones, healthcare technology, internet search engines, automated security systems,
all phases of the shipping industry... intelligent systems are ubiquitous. Students, as future innovators,
need to know to use them.

Robots elicit curiosity from people of all ages; there is something that fascinates people when they see
a robot moving around making decisions on its own. This natural attraction can open up opportunities
for inspiration and enlightenment in both conventional and unconventional ways. In fact, robotics
may be the premier integrator in education today. When students study robotics, they learn about
engineering, electronics, and programming. They gain equally valuable experience in managing
projects, analyzing systems, accessing information, working in teams, and problem solving.

Carnegie Mellon and LEGO are working together to design research-based educational tools that
promote mathematical and engineering competency, as well as technological and scientific literacy
for all generations of students. The Teaching ROBOTC for LEGO MINDSTORMS training CD enables
students to take their first step toward becoming competent programmers, engineers, and innovators.

In these lessons, students are given opportunities to design, build, program and troubleshoot tabletop
robots. These projects require a diverse and well-rounded skillset, from measurement to analysis,
calculation to communication, individual initiative to group collaboration. Engineering is a complex
and multi-faceted discipline, one which reflects the challenges and demands that tomorrow will make
of its citizens.

Today, we are finding that more high schools and colleges are using MINDSTORMS and other robots
to introduce engineering competencies and control concepts. Programming is an elusive key skill that
unlocks the potential of all these intelligent systems for students and educators. Teaching programming
builds a foundation for the future. Teaching ROBOTC for LEGO MINDSTORMS is a tool that we hope
will help you do that.

Best regards,

Robin Shoop,
Director of Educational Outreach
Carnegie Mellon Robotics Academy

�

Robot Educator Model
Building Instructions

�

�

�

1

2x

1x

�

1

2x

1x

1:1

1:1

2
1x 1x

3
1x1x 2x

4
1x

2x

�

1

2

3

4

1:1

5
1x

1x

2x

1x

2x

2x

1x

1:1

�

1

2

3

4

1:1

6
1x1x

1x

6x 1x2x2x

�

�
1:1

7
1x

2x

�0

1 2

3

1:1

8

1x

1x

1x

1x

1x

2x

��

9
1x1x

10
2x4x

��

2x

1:1

11
2x2x

12
1x

��

1:1

1 2

2x
1

1x1x

2
1x 1x

3
2x2x4x

4
1x1x1x

1x

��

1:1

5

2x

1x

1x

2x2x

1x

2x

3x

1:1

1

2

3

4 6

5

��

13

��

14
1x

��

15
2x2x

2x

��

16
2x2x

��

�0

Your Robot Educator Model
is now complete!

ROBOTC

Firmware • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware

You will need:
1. Your NXT
2. A computer with ROBOTC installed
3. A USB connector cable (A-B, included with 9797 base set)

You have installed ROBOTC and built the REM bot, but the robot is not yet able to
understand ROBOTC programs. You must first download firmware onto your NXT.
Firmware is the operating system for your robot. Once loaded on the brick, the
firmware will allow the NXT to load and run ROBOTC programs.

1. Plug one end of the USB cable into your NXT, and the other into your computer.
 If the robot is not on press the orange button on your NXT brick.

1a. Connect the USB cable
Plug one end of the USB cable into your
robot, and the other into your computer
to allow communication between them.

1b. Turn NXT on
Press the orange square on your
NXT brick to turn your robot on if
it is not already.

Setup

ROBOTC

Firmware • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware
2. Open up the ROBOTC program. To start ROBOTC go to the Start Menu, Programs or
 All Programs, RobotC and finally choose “RobotC for Mindstorms”.

2. Open ROBOTC for Mindstorms
Select the Start Menu > Programs or
All Programs > RobotC > RobotC for
Mindstorms to open up the ROBOTC
program.

Checkpoint
This what your screen should look like. The ROBOTC Dialog box will disappear
after a few seconds. What is left is the main ROBOTC window.

Setup

ROBOTC

Firmware • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware
3. Go to the “Robot” menu, then select “Download Firmware”.

4. The NXT Brick Download menu will appear. In the white box in the upper left,
you will see your NXT’s name and device address. Make sure the line for your NXT
is selected, then click on the “F/W Download” button.

3. Download Firmware
Select Robot > Download Firmware to
open up the NXT Brick Download menu.

4a. Select NXT
Select your NXT in the
window. Normally, there
will only be one listed.

4b. Select F/W
Download
Select “F/W Download” to
download the firmware to
your NXT brick.

Setup

ROBOTC

Firmware • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware

End of Section
The message log will show the progress of the firmware download. Your robot will appear to turn
off while the firmware is being loaded. When the process is complete, you will see a line at the
end of the log stating, “Firmware download completed”.

5. A list of available firmware files will appear. If there is only one firmware file listed,
select it. If there is more than one, choose the firmware file (.rfw) with the highest number.
Click “Open” to begin downloading the firmware.

5a. Select the (.rfw) file
Select the firmware file to download
to your robot. If more than one
is shown, select the one with the
highest number.

5b. Select Open
Once you have selected the file,
click “Open” to begin downloading
the firmware.

Setup

ROBOTC

Download Firmware Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Firmware Quiz

1. Mark each of the following statements as either ‘T’ for True or ‘F’ for False.

 _____ The firmware must be downloaded every time you wish to run a program on the NXT.

 _____ Without a firmware loaded, your robot cannot run any programs.

 _____ Once the ROBOTC firmware is loaded, you will be able to run both ROBOTC
 and normal NXT language programs.

 _____ All firmwares are identical, so as long as one is loaded, you can run any program.

 _____ Firmware and programs are the same thing.

 _____ You can download the firmware in ROBOTC by using the Robot menu command
 “Compile and Download”.

 _____ Without a firmware loaded, your robot cannot run any programs.

Setup

NAME DATE

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program

This is the program you will download onto the NXT.

Your robot is ready to go! All that’s left is for you to tell it what to do by
sending it a program. A program is a set of commands that tell the robot what
to do and how to react to its environment. Once written, a program must be
transferred (“downloaded”) to the robot before it can be run.

1. Normally, you would type this program directly into ROBOTC. For your convenience,
however, there is an already-completed copy provided in the Sample Programs folder.
Follow the steps below to open this program.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

1d. Open the program
Press “Open” to open the saved
MotorC Forward program.

1a. Open Sample Program
Select File > Open Sample
Program to find the saved program.

1c. Select the program
Select the “MotorC Forward”
program from the Training
Samples Folder.

1b. Select Training Samples
Open the Training Samples folder
to find the “MotorC Forward”
saved program.

Setup

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program
Checkpoint
The program should appear in the right-hand pane of the window.

2. Download the program to the robot by first turning it on, then using the
 “Compile and Download” command from the “Robot” menu.

2a. Turn NXT on
Press the orange square on your
NXT brick if it is not already on.

2b. Compile and Download
Select Robot > Compile and
Download Program to download
the MotorC Forward program.

Setup

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program
Checkpoint
Several new windows should appear. If you get an error, make sure that the robot is turned
on and plugged in to the computer with the USB cable, then try again.

3. Place the robot on an open area on the floor or table. In the Program Debug window, press
 the button labeled “Start”. The ROBOTC debug windows appear when the download is complete.

3a. Place robot
Place the robot in an open area,
on the floor or table, with the
USB cord connected.

3b. Select “Start”
Select the “Start” button to run
the MotorC Forward program.

Setup

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Checkpoint
The program we just downloaded told the robot to run one of the motors for three seconds.
This causes the robot to move in a circle or perform a pivot turn.

Download Program

Setup

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

If you get an error, make sure that the robot is turned on and plugged in to the computer
with the USB cable, then try again.

Download Program

Setup

ROBOTC

Download Program • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Return to the Main menu
Pressing the dark gray button a
few times will take you back to
the Main menu.

Go to the Main menu
Highlight “My Files”.

Press the orange button
Press the orange button to go
into the “My Files” menu.

Setup

End of Section.
The program must be loaded onto the robot while it is plugged in to the PC, but it can run
either attached, or unattached.

To run it unattached, first unplug the USB cable.

Download Program

Make sure your NXT is on, and take a look at your robot’s screen. You should be seeing the
main menu, and “My Files” should be displayed. Press the orange button.

ROBOTC

Download Program • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Select “Software Files”
Press the orange button again to go into
the “Software Files” menu.

Select your program
Navigate to your program using the right
and left arrow buttons. When you find the
name of your program, press the orange
button.

Run the program
Press the orange button one more time to
run the program.

Observe the robot
The robot should now move in a circle.

Setup

Download Program

ROBOTC

Download Sample Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Sample Quiz

1. Number the following steps in the order that you need to do them in order to successfully run a
 program. Put an ‘X’ next to any steps that are not a necessary part of the process.

 _____ Write or open an existing program file.

 _____ Press the dark grey button on the NXT.

 _____ Say clearly to the robot, “Run Program.”

 _____ Check that the robot is plugged in and turned on.

 _____ Navigate to the Try Me menu using the NXT’s LCD screen and buttons.

 _____ Press the Start button on the Program Debug window.

 _____ Open the Robot menu and select Compile and Download.

NAME DATE

Setup

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Robots are made to perform useful tasks. Each one is designed to solve a specific problem,
in a specific way.

Thinking About Programming Programmer & Machine

In this lesson, you will learn about the roles of the programmer and the robot, and how the
two need to work together in order to accomplish their goals.

Robotic Tractor

Problem:
Drive safely through a field
which may contain obstacles

Solution:
Move towards the destination,
making small detours if any
obstacles are detected

Labyrinth Robot

Problem:
Get through the maze

Solution:
Move along a predetermined
path in timed segments

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming Programmer & Machine (cont.)

Role of the Programmer
The human is responsible for
identifying the task, planning out a
solution, and then explaining to the
robot what it needs to do to reach
the goal.

Creating a successful robot takes a team effort between humans and machines.

58.5”

26”

11”

15.25”

14”

17.75”

17”

1

2

Let’s take a closer look at this last robot. How does it do that? How does it know to do that?

??????Problem Goal Reached

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming Programmer & Machine (cont.)

Role of the Robot
The machine is responsible for
following the instructions it is given,
and thereby carrying out the plan.

The human and the robot can accomplish the task together by dividing up the responsibilities.
The human programmer must come up with the plan and communicate it to the robot, and
the robot must follow the plan.

Human

Create plan

Robot

Follow planProblem Goal Reached

Because humans and machines don’t normally speak the same language, a special language
must be used to translate the necessary instructions from human to robot. There are many such
languages, with ROBOTC being one of them. These human-to-robot languages are called
“programming” languages, and instructions written in them are called “programs”.

Robot

Follow programProblem Goal Reached

Human

Create plan Write program

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

End of Section
The human who writes the program is called the programmer. The programmer’s job, therefore, is
to identify the problem that the robot must solve, to create a plan to solve it, and to turn that plan
into a program that the robot can understand. The robot will then run the program, and perform
the task.

Finally, take note: the robot only follows the program, it does not think for itself. Just as it can be no
stronger than it is built, the robot can be no smarter than the program that the human programmer
gave it. You, as programmer, will be responsible for planning and describing to the robot exactly
what it needs to do to accomplish its task.

Thinking about Programming Programmer & Machine (cont.)

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson, you will learn how thinking in terms of “behaviors” can help you to see the
logic behind your robot’s actions, and break a big plan down into practical parts.

“Behaviors” are a very convenient way to talk about what the robot is doing, and what it must do.
Moving forward, stopping, turning, looking for an obstacle… these are all behaviors.

Thinking About Programming Planning & Behaviors

Complex Behavior
Some behaviors are big, like “solve the maze.”

1

2

Basic or Simple Behavior
Some behaviors are small, like “go forward for 3
seconds.” Big behaviors are actually made up of
these smaller ones.

1

2

As you begin the task of programming, you should also begin thinking about the robot’s actions
in terms of behaviors. Recall that as programmer, your primary responsibilities are:

• First, to formulate a plan for the robot to reach the goal,
• And then, to translate that plan into a program that the robot can follow.

The plan will simply be the sequence of behaviors that the robot needs to follow, and the program
will just be those behaviors translated into the programming language.

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming Planning & Behaviors (cont.)

2

1

2. Broad solution
Try to see what the robot needs to do, at a high
level, to accomplish the goal.

Having the robot follow the path shown on the
left, for example, would solve the problem.

You’ve just identified the first behavior you need!
Write it down.

Follow the path to reach the goal

3. Break solution into smaller behaviors
Now, start trying to break that behavior down into
smaller parts.

Following this path involves moving forward,
then turning, then moving forward for a different
distance, then turning the other way, and so on.
Each of these smaller actions is also a behavior.

Write them down as well, taking care to keep
them in the correct sequence.

2

1

Follow the path to reach the goal

Go forward 3 secondsTurn left 90º
Go forward 5 secondsTurn right 90º
Go forward 2 secondsTurn right 90º
Go forward 2 seconds

4. Break into even smaller pieces
If you then break down these behaviors into even
smaller pieces, you’ll get smaller and smaller
behaviors, with more and more detail. Keep track
of them as you go.

Eventually, you’ll reach commands that you can
express directly in the programming language.

For example, ROBOTC has a command to turn on
one motor. When you reach a behavior that says
to turn on one motor, you can stop breaking it
down, because it’s now ready to translate.

1

2

1

Follow the
path to reach
the goalGo forward 3 secondsTurn left 90º

Go forward 5 secondsTurn right 90º
Go forward 2 secondsTurn right 90º
Go forward 2 seconds

Go forward for 3 seconds

Turn on left motorTurn on right motorWait 3 seconds
Turn off left motorTurn off right motor

1. Examine problem
To find a solution, start by examining the problem.

Here, the problem is to get from the starting point
(1) to the goal (2).

2

1

ROBOTC

Fundamentals

Thinking about Programming • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming Planning & Behaviors (cont.)

When all the pieces have reached a level of detail
that ROBOTC can work with – like the ones in the
“ROBOTC-ready behaviors” list above – take a
look at the list you’ve made. These behaviors, in the
order and way that you’ve specified them, represent
the plan that the robot needs to follow in order to
accomplish the goal.

Because the steps are still written in English, they
should be relatively easy to understand for the
human programmer.

As the programmer becomes more experienced,
the organization of the behaviors in English will
start to include important techniques from the
programming language itself, like if-else statements
and loops. This hybrid language, halfway between
English and the programming language, is called
pseudocode, and is an important tool in helping
to keep larger programs understandable.

Go forward for 3 seconds

Turn on left motorTurn on right motorWait 3 seconds
Turn off left motorTurn off right motor

Follow the path to reach the goal

Go forward 3 secondsTurn left 90º
Go forward 5 secondsTurn right 90º
Go forward 2 secondsTurn right 90º
Go forward 2 seconds Turn left 90º

Reverse left motorTurn on right motorWait 0.8 secondsTurn off left motorTurn off right motor

Go forward for 5 seconds

Turn on left motorTurn on right motorWait 5 seconds

1. Turn on left motor

2. Turn on right motor

3. Wait 3 seconds

4. Turn off left motor

5. Turn off right motor

6. Reverse left motor

7. Turn on right motor

8. Wait 0.8 seconds

9. Turn off left motor

10. Turn off right motor

11. Turn on left motor

12. Turn on right motor

13. Wait 5 seconds
...

Large behavior Smaller behaviors ROBOTC-ready behaviors

Step by step
1. Start with a large-

scale behavior that
solves the problem.

2. Break it down into
smaller pieces. Then
break the smaller
pieces down as well.

3. Repeat until you
have behaviors that
are small enough
for ROBOTC to
understand.

1. Turn on left motor
2. Turn on right motor
3. Wait 3 seconds
4. Turn off left motor
5. Turn off right motor

Simple pseudocode
Your list of behaviors to perform in a specific
order are a simple form of pseudocode.

if (the light sensor sees light)
{
 turn on left motor
 hold right motor still
}

Later pseudocode
As your programming skills grow, your
pseudocode will include more complex logic,
but will still serve the same purpose: to help
you find and express the necessary robot
behaviors in simple English.

ROBOTC

Fundamentals

Thinking about Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

End of Section
By starting with a very large solution behavior, and breaking it down into smaller and smaller
sub-behaviors, you have a logical way to figure out what the robot needs to do in order to
accomplish its task.

By recording the behaviors in English, you have taken the first steps toward good pseudocoding
practice, allowing you to easily review the behaviors and their organization as you prepare to
translate them to program code.

The only step remaining is to translate your behaviors from English pseudocode to ROBOTC
programming language.

Thinking about Programming Planning & Behaviors (cont.)

ROBOTC

Thinking Programming Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Fundamentals

Thinking about Programming Quiz

1. What is the role of the programmer?

2. Break the complex behavior “get ready for school in the morning”
 into at least five smaller behaviors, and list them below.

NAME DATE

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson, you will learn the basic rules for writing ROBOTC programs.

ROBOTC is a text-based programming language based on
the standard C programming language.

Programming in ROBOTC ROBOTC Rules

Commands to the robot are written as text on the screen, processed by the ROBOTC compiler into
a machine language file, and then loaded onto the robot, where they can be run. Text written as
part of a program is called “code”.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Program Code
Text written as part of a
program is called “code”.

1
2
3
4
5
6
7

You type code just like normal text, but you must keep in mind that capitalization is important to
the computer. Replacing a lowercase letter with a capital letter or a capital letter with lowercase,
will cause the robot to become confused.

Task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Capitalization
Capitalization (paying attention to UPPERCASE
vs. lowercase) is important in ROBOTC.

Capitalizing the ‘T’ in task causes ROBOTC
to no longer recognize this command.

1
2
3
4
5
6
7

As you type, ROBOTC will try to help you out by coloring the words it recognizes. If a word appears
in a different color, it means ROBOTC knows it as an important word in the programming language.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Code coloring
ROBOTC automatically colors key words
that it recognizes.

Compare this correctly-capitalized “task”
command with the incorrectly-capitalized
version in the previous example. The correct one
is recognized as a command and turns blue.

1
2
3
4
5
6
7

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

And now, we will look at some of the important parts of the program code itself.

The most basic kind of statement in ROBOTC simply gives a command to the robot.
The motor[motorC]; statement in the sample program you downloaded is a simple
command. It instructs the motor plugged into the Motor C port to turn on at 100% power.

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

Simple statement
A straightforward command to the robot.

This statement tells the robot to turn on
the motor attached to motor port C at
100% power.

1
2
3
4
5
6
7

Statements are run in order, as quickly as the robot is able to reach them. Running this program
on the robot turns the motor on, then waits for 3000 milliseconds (3 seconds) with the motor still
running, and then ends.

Sequence
Statements run in English reading order
(left-to-right, top-to-bottom). As soon as
one command is complete, the next runs.

These two statements cause the motors to
turn on (1st command), and then the robot
immediately begins a three second wait
(2nd command) while the motors remain on.

Programming in ROBOTC ROBOTC Rules (cont.)

Simple statement (2)
This is also a simple statement. It tells
the robot to wait for 3000 milliseconds
(3 seconds).

1st

2nd

End
When the program runs out of statements
and reaches the } symbol in task main, all
motors stop, and the program ends.

End

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

How did ROBOTC know that these were two separate commands?
Was it because they appeared on two different lines?

No. Spaces and line breaks in ROBOTC are only used to separate words from each other in
multi-word commands. Spaces, tabs, and lines don’t affect the way a program is interpreted
by the machine.

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

Whitespace
Spaces, tabs, and line breaks are generally
unimportant to ROBOTC and the robot.

They are sometimes needed to separate
words in multi-word commands, but are
otherwise ignored by the machine.

1
2
3
4
5
6
7

But what about ROBOTC? How DID it know where one statement ended and the other began?
It knew because of the semicolon at the end of each line. Every statement ends with a
semicolon. It’s like the period at the end of a sentence.

Semicolons
Like periods in an English sentence,
semicolons mark the end of every
ROBOTC statement.

task main(){motor[motorC
]=0;wait1Msec(3000);}

No Whitespace
To ROBOTC, this program is the same as
the last one. To the human programmer,
however, this is close to gibberish.

Whitespace is used to help programs be
readable to humans.

1
2

So why ARE they on separate lines? For the programmer. Programming languages are
designed for humans and machines to communicate. Using spaces, tabs, and lines helps
the human programmer to read the code more easily. Making good use of spacing in your
program is a very good habit for your own sake.

Checkpoint
Statements are commands to the robot. Each statement ends in a semicolon so that ROBOTC
can identify it, but each is also usually written on its own line to make it easier for humans to
read. Statements are run in “reading” order, left to right, top to bottom, and each statement is
run as soon as the previous one is complete. When there are no more statements, the program
will end.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC uses far more punctuation than English. Punctuation in programming
languages is usually used to separate important areas of code from each other. Most
ROBOTC punctuation comes in pairs.

Punctuation pairs, like the parentheses and square brackets in these two statements, are
used to mark off special areas of code. Every punctuation pair consists of an “opening”
punctuation mark and a “closing” punctuation mark. The punctuation pair designates the
area between them as having special meaning to the command that they are part of.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint
Paired punctuation marks are always used together, and surround specific important parts of a
statement to set them apart.

Different commands make use of different punctuation. The motor command uses square
brackets and the wait1Msec command uses parentheses. This is just the way the commands are
set up, and you will have to remember to use the right punctuation with the right commands.

Punctuation pair: Square brackets []
The code written between the square
brackets of the motor command indicate
what motor the command should use.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Punctuation pair: Parentheses ()
The code written between the parentheses
of the wait1Msec command tell it how
many milliseconds to wait.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Simple statements do the work in ROBOTC, but Control Structures do the thinking.
These are pieces of code that control the flow of the program’s commands, rather than issue
direct orders to the robot.

Simple statements can only run one after another in order, but control statements allow the
program to choose the order that statements are run. For instance, they may choose
between two different groups of statements and only run one of them, or sometimes they
might repeat a group of statements over and over.

One important structure is the task main. Every ROBOTC program includes a special section
called task main. This control structure determines what code the robot will run as part of the
main program.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint
Control structures like task main decide which lines of code are run, and when. They control
the “flow” of your program, and are vital to your robot’s ability to make decisions and respond
intelligently to its environment.

Control structure: task main
The control structure “task main” directs the
program to the main body of the code. When you
press “Start” or “Run” on the robot, the program
immediately goes to task main and runs its code.

The left and right curly braces { } belong to the
task main structure. They surround the commands
which will be run in the program.

while(SensorValue(touchSensor) == 0)
{
 motor[motorC] = 100;
 motor[motorB] = 100;
}

Control structure preview
Another control structure, the while
loop, repeats the code between its
curly braces { } as long as certain
conditions are met.

Normally, statements run only
once, but with a while loop, they
can be told to repeat over and
over for as long as you want!

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Programming languages are meant to be readable by both humans and machines.
Sometimes, the programmer needs to leave a note for human readers to help understand what
the code is doing. For this, ROBOTC allows “comments” to be made.

Comments are text that the computer will ignore. A comment can therefore contain notes,
messages, and symbols that may help a human, but would be meaningless to the computer.
ROBOTC will simply skip over them. Comments appear in green in ROBOTC.

End of Section
What you have just seen are some of the primary features of the ROBOTC language. Code is
entered as text, which builds statements. Statements are used to issue commands to the robots.
Control structures decide which statements to run at what times. Punctuation, both single like
semicolons and paired like parentheses, are used to set apart important parts of commands.

A number of features in ROBOTC code are designed to help the human, rather than the
computer. Comments let programmers leave notes for themselves and others, and whitespace
like tabs and spaces helps to keep your code organized and readable.

// Move motor C forward with 100% power

task main()
{

 /*
 Motor C forward with 100% power
 Do this for 3 seconds
 */

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Comments: // Single line
Any section of text that follows
a //double slash on a line,
is considered a comment,
although code to the left of the
// is still considered normal.

Comments: /* Any length */
A comment can be created in ROBOTC
using another type of paired punctuation,
which starts with /* and ends with */

This type of comment can span multiple
lines, so be sure to include both the
opening and closing marks!

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

ROBOTC Programming Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Programming Quiz

1. What punctuation mark signals the end of a simple statement?

2. Give an example of paired punctuation.

1. Control structures such as task main or if-else:
 a. Issue direct commands to the robot’s motors
 b. Are only there for the human programmer’s benefit, and are ignored by the robot
 c. Control the “flow” of commands: they choose which commands to run and when
 d. Are a form of paired punctuation

Fundamentals

NAME DATE

ROBOTC

Labyrinth Challenge© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Materials Needed

Labyrinth Challenge

• Black electrical tape
• Red electrical tape
• Scissors (or cutting tool)
• Ruler (or straight edge)

58.5”

26”

11”

15.25”

14”

17.75”

17”

Challenge Description
This challenge features a sequence of turns that the robot must perform in order to get to the
“end” of the Labyrinth. The robot must first begin at the starting point, and get to the goal area
by completing turning and forward movement behaviors. The robot must NOT cross any lines.

Board Specifications

1

2

1

2

Robot must begin here, and then maneuver the robot to get to the goal area.

Robot must reach this goal area without crossing any black lines (Goal area lines).

Movement

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Now that you understand the steps needed to download a program, which you learned through
downloading a sample program, let’s take a step back and figure out what all of this “code” is
really doing.

Here on the main screen we have several lines of code. Let’s walk through what each of these
commands “does”.

Moving Forward Code Dissection

1
2
3
4
5
6
7

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

task main()
This line creates a task called main,
which contains the behaviors that
we want the robot to do.

task main() marks the
beginning of a structure.

{ body }
{ and } “braces” surround the
body of the structure. The lines
between the braces tell the
program what commands to follow
as part of the main task.

As you know, the code currently tells the robot to move in a circle. More literally, it tells the robot
to move “Motor C” forward for 3 seconds. Moving only one motor, or wheel, will make your robot
go in circles. The details of each command are as follows:

motor[] command
The motor[] cammand tells the robot to set a motor to run at a given power level. The
example below (taken from the program you ran) sets motor C to run at 100% power
forward. Note that every command in ROBOTC must end with a semicolon, just as every
English statement must end with a period.

Example:

motor[motorC] = 100;

wait1Msec() command
The command “wait1Msec” tells the robot to wait, for the given time in milliseconds.
The number within the parenthesis is the number of milliseconds that you want the robot
to wait. 3000 milliseconds is equal to 3 seconds, so the robot moves for 3 seconds.

Example:

wait1Msec(3000);

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Code Dissection (cont.)

In this lesson, you will modify the existing program code to create a Moving Forward
behavior with the robot.

1. Before making any changes, save the program with a new name. Go to “File”, “Save As”, and
rename this program to “Labyrinth”.

1a. Save program As...
Select File > Save As... to save your
program under a new name.

1b. Browse to an
appropriate folder
Browse to or create a
folder (on your desktop,
in your documents folder,
etc.) that you will use to
store your programs.

1d. Save
Click Save.

1c. Rename program
Give this program the
new name “Labyrinth”.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = 100;

 wait1Msec(3000);

}

2. Add this space
This is where we will add the
second motor command in
the next step.

2. Add a new line after the first motor command.

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Code Dissection (cont.)

3. In order to make the robot go forward, you’ll want both motor C and motor B to run
forward. The command motor[motorC]=100; made Motor C move at 100% power.
Add a command that is exactly the same, but addresses Motor B instead.

4. Make sure your robot is on and that the robot is plugged in with the USB cable,
then go to the menu “Robot” > “Compile and Download”.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = 100;
 motor[motorB] = 100;
 wait1Msec(3000);

}

3. Add this code
This code is exactly the same as
the line above it, except that it is
directed at Motor B (right wheel)
instead of Motor C (left wheel).

4b. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

4a. Check connection
Ensure that your robot is turned on
and plugged in to the computer
through the USB cable

4c. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Code Dissection (cont.)

End of Section
By examining what each line of code in the Sample Program did, we were able to figure out a
way to turn on the other motor on the robot as well. Both motors running together created a
forward movement. Proceed to the next section to begin experimenting with the other parts of
the program.

5. Once the program is downloaded, you can either unplug the bot and navigate to your program
to run it, or you can keep it connected to the computer and click on the “Start” button.

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Timing Lesson

In this lesson, you will learn how to adjust the time (and consequently, the distance) the robot
travels in the Moving Forward behavior.

The robot moves forward for 3 seconds. This is a great start, but the end needs work.

1. Adjust the amount of time the robot lets its motors run, by changing the number value inside
the wait1Msec command.

Missed turn
The robot has traveled
too far and cannot make
the first turn in the maze.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = 100;
 motor[motorB] = 100;
 wait1Msec(2000);

}

1. Modify this code
Change the 3000 milliseconds in the
wait1Msec command to 2000 milliseconds.

ROBOTC

Movement

Moving Forward • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Timing (cont.)

End of Section. The wait1Msec command controlled how long the robot let its motors run. By
shortening the duration from 3000ms to 2000ms, we adjusted the total distance traveled as well.

2. Compile and Download the program by going to “Robot” > “Compile and Download”.

2a. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

Ready to turn
The robot stops in a good
position to begin its next
maneuver, a left turn toward
the next part of the path.

2b. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

ROBOTC

Moving Forward Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Quiz

2. Look at the code below. Write a second block of code that would cause the robot
 to move at half the speed, but still move approximately the same distance.

task main()
{
 motor[motorC] = 100;
 motor[motorB] = 100;
 wait1Msec(2000);

}

1
2
3
4
5
6
7
8
9

10
11
12
13

a. Line 1
b. Lines 4 & 5
c. Line 6
d. This robot moves forever

1
2
3
4
5
6

task main()
{
 motor[motorC] = 100;
 motor[motorB] = 100;
 wait1Msec(2000);
}

1. In the program below, which line or lines control how long the robot will move?

Movement

NAME DATE

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving at slower speeds can help your robot to be more consistent. All you need to do is alter the
motor commands to turn the motors on with a power level lower than 100%.

Speed and Direction Motor Power

In this lesson, you will modify the existing program to make your robot move at a slower
speed. This should result in more consistent movement.

1. Change the power levels in your motor[] commands to move at half speed.

2. Download and run your program. Note that downloading automatically saves your program.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(2000);

}

1. Modify this code
Change the old 100 (100% power)
to 50 (50% power) to make the
robot move at half power. Do this
for both motor commands.

2a. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

2b. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Motor Power (cont.)

3. Since the power has been halved, try doubling the time.

4. Download and run again.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(4000);

}

3. Modify this code
Since the motors are traveling at
half power, double the 2000ms
duration to 4000ms.

Checkpoint. The numeric value assigned to each motor in the motor[] commands represents
the % of power that the motors will run with. So far, we’ve changed them from full power to half.
Since your robot is traveling slower, it will now need to travel longer to go the same distance.

Distance changed
Traveling for the same amount
of time, but at a slower pace,
causes the robot to stop short of
its destination.

4a. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

4b. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Motor Power (cont.)

End of Section
Your robot is traveling approximately the same distance, but at a slower speed than before.
Traveling at this speed, the robot is able to maneuver more consistently, and its behaviors
are easier to see and identify.

Back again
The robot now travels the correct
distance again, but at a slower
speed than before.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse

In this lesson, you will learn how to make the robot turn and back up using different
combinations of motor powers, and how to perform multiple actions in a sequence.

Setting both motors to half power makes the robot go slower. What do other combinations
of motor powers do?

1. Negative numbers make the motor spin in reverse, up to -100% power.

1d. Move Backward
The robot runs in reverse with both
motors set to -100% power.

1
2
3
4
5
6
7
8

task main()
{

 motor[motorC] = -100;
 motor[motorB] = -100;
 wait1Msec(4000);

}

1a. Modify this code
Change both motors to run at -100% power.

1b. Compile and Download
Select Robot > Compile and
Download Program to send your
program to the robot.

1c. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

2. A motor power of 0 makes the robot stop.

task main()
{

 motor[motorC] = 0;
 motor[motorB] = 0;
 wait1Msec(4000);

}

2a. Modify this code
Change both motors to run at 0% power.

2b. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

2c. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

1
2
3
4
5
6
7
8

2d. Braking
The robot holds its position and applies
braking with both motors set to 0% power.

Try pushing the robot while the program
is running.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

3. Giving different powers to the two motors causes the robot to turn in various ways.
Giving them opposite powers causes the robot to turn in place.

task main()
{

 motor[motorC] = 100;
 motor[motorB] = -100;
 wait1Msec(4000);

}

3a. Modify this code
Change the motors to run at 100%
power in opposite directions.

3b. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

3c. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

1
2
3
4
5
6
7
8

3d. Point Turn Right
Making the left wheel go forward while
the right wheel goes backward causes
a “point turn” in place to the right.

ROBOTC

Movement

Speed & Direction • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

4. Making one wheel move while the other remains stationary causes the robot to “swing turn”
with the stationary wheel acting as a pivot.

task main()
{

 motor[motorC] = 100;
 motor[motorB] = 0;
 wait1Msec(4000);

}

4a. Modify this code
Make one wheel move
while the holds its position.

4b. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

4c. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

1
2
3
4
5
6
7
8

4d. Swing Turn Right
Making the left wheel go forward while
holding the right wheel stationary causes a
“swing turn” around the stationary wheel.

ROBOTC

Movement

Speed & Direction • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

Checkpoint
The following table shows the different types of movement that result from various
combinations of motor powers. Remember, these commands only set the motor powers.
A wait1Msec command is still needed to tell the robot how long to let them run.

Motor commands Resulting movement

motor[motorC]=100;
motor[motorB]=100;

motor[motorC]=50;
motor[motorB]=50;

motor[motorC]=-100;
motor[motorB]=-100;

motor[motorC]=0;
motor[motorB]=0;

motor[motorC]=100;
motor[motorB]=-100;

motor[motorC]=100;
motor[motorB]=0;

ROBOTC

Movement

Speed & Direction • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

6. Finally, the robot will need to be able to perform multiple actions in a sequence. Commands in
ROBOTC are run in order from top to bottom, so to have the robot perform one behavior after
another, simply add the second one below the first in the code.

6e. Behavior Sequences
Placing behaviors one after
another in the code tells your
robot to perform them in
sequence.

The moving-forward behavior
in lines 4-6 of the program is
done first (at left). The turning
behavior in lines 8-10 follows
immediately afterward.

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(4000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

6a. Modify this code
Restore the first behavior to a
half-power forward movement.

6c. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

6d. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.

1
2
3
4
5
6
7
8
9

10
11
12

6b. Add this code
Adding a left-point-turn behavior
after the moving-forward behavior
will make the robot move then turn.

The turn needs only about 0.8
seconds (800ms) to complete.

ROBOTC

Movement

Speed & Direction • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Turn and Reverse (cont.)

End of Section
You now know how to program all the necessary behaviors to navigate the Labyrinth. However,
even at lowered speeds, the robot’s movements are not as precise as we might like. Continue
on to the Improved Movement section to learn how to clean up the robot’s motion.

One down...
The robot has completed
the first leg of its jouney,
and is ready for the next!

ROBOTC

Speed & Direction Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed and Direction Quiz

2. In the section below, write code that makes the robot perform the following tasks in order:
 a. Move forward at half speed for 3 seconds, then
 b. Turn in place to the right for half a second (at any speed), then
 c. Move reverse at full speed for 1 second

task main()
{

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1. In the code example below, the speed of the robot could be changed by manipulating the:

task main()
{
 motor[motorC] = 100;
 motor[motorB] = 100;
 wait1Msec(4000);
}

1
2
3
4
5
6

 a. motor brackets.
 b. motor time.
 c. motor power.
 d. motor sensor.

Movement

NAME DATE

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

You know how to make the robot move, and you’ve made improvements to its performance by
having it brake and maneuver at a slower speed. Even so, you have probably noticed by now that
the robot’s idea of “straight”… isn’t.

Even when you set the motors to go the same speed, the robot turns a little. Recall that a turn
results from two motors moving at different speeds.

Improved Movement Manual Straightening

Off course
This robot has drifted noticeably
to the left while running.

1
2
3
4
5
6
7
8
9

10
11
12

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(4000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

Same speed?
If both motors are set the same,
shouldn’t they go the same speed
and therefore move straight?

Actually, SPEEDS aren’t set with the motor[] commands. Motor POWER is. However, not all motors
are created equal. Various factors in the robot’s construction, and the manufacturing process for
the motors themselves cause different amounts of energy to be lost to friction in each motor.

This means that even though both motors start with the same power at the plug, the amount of
power that reaches the wheel to move the robot can vary quite a bit. Even with the same POWER
being applied, SPEEDS may differ. And as you know, wheels moving at different speeds make the
robot turn, even if just a little bit. So to fix this situation, let’s do the logical thing, we’ll change the
power so the motors end up going the same speed.

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Manual Straightening (cont.)

In this lesson, you will manually adjust your motor command powers to make your robot go
straight, watching for patterns to make the process smoother in the future.

1. We can’t speed up the slower motor, because it’s already going full power. So instead, we’ll
have to slow down the faster one. The robot shown in this example has veered left, indicating
that the right motor is going faster than the left.

Lesson Note
The example robot used in this lesson
drifts slightly to the left. If your robot
drifts in the other direction, simply apply
the following steps to the other motor.

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 45;
 wait1Msec(4000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

1a. Modify this code
Reduce the faster motor’s power by 5%
in the moving-forward behavior.

1
2
3
4
5
6
7
8
9

10
11
12

1b. Compile and Download
Select Robot > Compile and
Download Program.

1c. Press Start
Press the Start button on the
Program Debug menu.

1d. Observe behavior
Did the robot go straight?
This one curves to the right now.

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Manual Straightening (cont.)

2. We seem to have overcorrected, and our robot now curves in the opposite direction. So we’ll
adjust our guess, and go with something in between the original and our last guess.

task main()
{

 motor[motorC] = 50;
 motor[motorB] = 48;
 wait1Msec(4000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

2a. Modify this code
50 was too high, and 45 too low.
Choose a value in between, like 48.

1
2
3
4
5
6
7
8
9

10
11
12

2b. Compile and Download
Select Robot > Compile and
Download Program.

2c. Press Start
Press the Start button on the
Program Debug menu.

2d. Observe behavior
Did the robot go straight?
It looks a lot better now.

End of Section
This method of manual straightening works, but it’s unwieldy. One big problem is that it
requires reprogramming any time something changes. Running on a different table surface,
negotiating a slope, running after the batteries have run down, and even tuning up the robot
will all force you to re-adjust these values.

Worse still, the program values don’t work on every robot. In the example, we had to change
our motor to 48%, but you probably had to do something quite different with yours. Worse
yet, there are obstacles out there that can’t be accounted for by programming your robot
hours or weeks in advance. Manual adjustment to robot power levels can work, but there
must be a better way…

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

We found that we could make a robot move straighter by adjusting power levels so that its
wheels move at the same SPEED rather than just being driven with the same power. However,
manual adjustment has severe limitations. What if we could find a way to make those
adjustments automatically?

Improved Movement Principles of PID

In this lesson, you will learn how the PID speed control algorithm works.

Using the rotation sensors built into the NXT motors, the robot can be aware of how far each
wheel has moved. By comparing the motor’s current position to its position a split second ago,
the robot can calculate how fast the wheel is moving.

A short time later... (t=0.1s)
1/10th of a second later, the wheel has turned slightly.
Since both the change in position and the change in time
are known, the robot can calculate the rate of turn.

Starting position (t=0)
The initial position of the wheel as it starts turning.

Speed = ∆angle
∆time

Suppose the wheel turned 30 degrees in the 0.1 seconds shown above. The robot would
automatically calculate the speed as:

Speed = ∆angle
∆time

Speed = 30º
0.1sec

Speed = 300º/sec

This speed is translated into a “speed rating” in the NXT firmware so that a speed rating of 100
would correspond to an “ideal motor” running at 100% power.

Since the robot can now tell how fast the wheel is actualy turning, it can use PID to tune the
motor power levels to make sure it is running at the correct speed. If the motor’s actual speed
is lower than it should be, the PID algorithm will increase its power level. If the motor is ahead,
PID will slow it down. On the following page, we’ll find out how it works.

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

Without PID engaged, motor control is an “open loop” process. Motor power is set, but no
mechanism is in place to see whether the desired speed is actually being acheived, and no
corrections can be made.

Desired
Speed

50

Motor
Power

50

Desired
Speed

50

Motor
Power

50

Measured
Speed

46

1. Motor Power
The motor is told to run at a power level that will theoretically
produce the correct speed.

Without PID control, this is the only step used.

2. Measured Speed
With PID, the robot will also measure the actual speed of the motor, by
measuring the position of the wheel over time (as shown on the previous page).

Real motors very rarely match up perfectly with “ideal” values, therefore the actual speed is
different when given the “theorotical” power.

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

Desired
Speed

50

Motor
Power

50

Measured
Speed

46

Error

4

Desired
Speed

50

Motor
Power

50

Measured
Speed

46

PID
Adjustment

+5

Error

4

4. PID Adjustment
Based on the size of the error,
the PID algorithm proposes an
adjustment to the motor power that
should get the motor’s actual speed
closer to the desired speed.

3. Error
The difference between the desired speed and the actual speed
is calculated. This difference is called the “error”. A large error
indicates that the motor’s actual speed is significantly different
from the speed it should be maintaining.

How far off is the speed? The “error” term is simply the difference between the
measured speed and the desired speed.

Based on the size of the error term, and how the error has been changing over
time (has it been getting bigger or smaller?), the PID algorithm calculates an
adjustment to the motor power that should help the motor’s actual speed to get
closer to the desired speed.

ROBOTC

Movement

Improved Movement • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

6. Repeat Cycle
The motor runs with the new
power, and the cycle repeats.
The robot measures the new
speed, calculates a new error,
and a new adjustment. This
process of self-adjustment
continues as long as the
program keeps running.

The new motor power is calculated by adding the PID adjustment factor to the original power.

The adjustment is applied to the motor power. The speed is measured again. The error is
recalculated (hopefully it is now smaller!). A new adjustment factor is determined. The cycle
continues forever, always ready to catch and compensate for any factor that may make the
robot go at the wrong speed.

5. Apply Adjustment
The PID Adjustement factor is
applied to the robot’s motor
power (50 + 5 = 55).

Desired
Speed

50

Motor
Power

55

Measured
Speed

46

PID
Adjustment

+5

Error

4

Desired
Speed

50

Motor
Power

55

Measured
Speed

53

PID
Adjustment

+2

Error

-3

ROBOTC

Movement

Improved Movement • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

End of Section
This setup, where the robot monitors and adjusts its speed based on measurements it takes
itself, is called “closed loop” control. The term refers to the “loop” relationship formed by
output (motor power) and feedback (speed measurement, error, and PID adjustment factor).

PID gives your robot the ability to intelligently self-adjust its motor power levels to the correct
values to maintain a desired speed. The closed-loop system monitors the “error” difference
between how fast the robot is going and how fast it should be, and makes adjustments to the
motor’s power level accordingly.

ROBOTC

Movement

Improved Movement • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC includes a PID algorithm already built into the firmware. In order to take advantage of
PID speed control, you must first enable it in your program.

Improved Movement PID Programming

In this lesson, you will learn how to enable PID speed control for your robot’s motors, using
ROBOTC’s built-in motor control features.

1. Start with your moving-and-turning Labyrinth program. Save your program with a new
name: “LabyrinthPID”.

1a. Save program As...
Select File > Save As... to save your
program under a new name.

1b. Browse to an
appropriate folder
Browse to or create an appropriately
named folder within your program
folder to save your program.

1d. Save
Click Save.

1c. Rename program
Give this program the
new name “LabyrinthPID”.

ROBOTC

Movement

Improved Movement • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement PID Programming (cont.)

2. PID control must be enabled for each motor on the robot.

3. Download and run. Keep your robot plugged in.

task main()
{

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(30000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

2a. Add this code
Enable PID control on both
motors by setting their
nMotorPIDSpeedControl
modes to mtrSpeedReg.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2b. Modify this code
Restore the motor command
settings to 50%.

3b. Download and Compile
Click Robot > Download Program.

3c. Run the program
Click “Start” on the onscreen
Program Debug window.

3a. Block up the robot
Place an object under the robot so that
its wheels can’t reach the table. This
lets you run the robot without having
to chase it around.

2c. Modify this code
We want enough time
to see and test the
effects of PID control.
Change this value to 30
seconds (30000 ms).

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement PID Programming (cont.)

4. A window should appear called the “NXT Device Control Display”. If it doesn’t appear...

4. NXT Device Control Display
Make sure this window is showing. If not,
open it through Robot > Debug Windows >
NXT Devices.

Checkpoint
This debugger window is a troubleshooting tool that can help you see what your robot is doing,
and what it thinks it’s doing. The lines we’re interested in are highlighted above: “Speed” and
“PID” for Motors C and B.

The Speed column shows the desired speed for the motor, which we set to be 50%. The PID
column shows the actual amount of power that the robot is giving the motor to make it move at
that speed.

Adjusted motor power
The PID algorithm is having to give
this motor 64% power to achieve
50% speed. This is typical, because
the motor needs additional power to
overcome friction.

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

5. Hold one wheel in place and watch the power values on its corresponding motor.

5b. Observe motor power
The PID algorithm will notice that the
motor’s measured speed is falling
behind where it should be, and will
increase the motor’s power level to try
to bring the speed up.

6. Release the wheel and observe its reaction.

6a. Release the wheel
Let go of the wheel so it can turn
freely again.

5a. Hold wheel
Grab one of the wheels on the robot
and hold it so it stops. In the picture,
motor C’s wheel is being held.

Improved Movement PID Programming (cont.)

6b. Observe motor power
Now that the wheel is going too fast,
the motor will decrease its power until
it reaches the correct speed.

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

7. End the program and return the timing to what it was before.

7. Modify this code
Change the timing back to
4000ms (still at 50% speed).

End of Section
PID control is a great way to make your robot’s movement more consistent. The algorithm
monitors how fast the motors are turning versus how far they should be, and adjusts the motors’
power levels to keep them on track. This allows the robot to automatically adjust for minor
variations both in the environment and in the motors themselves.

Improved Movement PID Programming (cont.)

task main()
{

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(4000);

 motor[motorC] = -50;
 motor[motorB] = 50;
 wait1Msec(800);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors

When we started, we said that we wanted the robot to go straight. Its motors should move at the
same speed. PID control gave us that in a roundabout way: by asking both motors to maintain
a target speed, and giving them both the same target, they moved the same speed. Sort of.

If we run into a tough spot like this, how should the robot react?

Using PID, the other motor will keep running at the speed it was set to, and the robot will begin
to spin in a circle as if ordered to turn.

However, if going straight is the priority, then we need to change our perspective slightly. We’ll
need to enforce identical speeds on the two motors as our first priority, not just tell both motors
to seek the same target independently. The sameness of the values is more important than
the exact speed.

ROBOTC includes a feature called Motor Synchronization, which allows you to pair two motors
together, and define their speeds relative to each other. If you tell them that their goal is to stay
exactly together with one another as they move, then they will, even if it means the faster one
has to stop and wait. The goal of keeping both motors together takes precedence over reaching
the “ideal” speed.

Stuck
The wheel is being held firmly
in place... what should the
other wheel do?

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson, you will learn how to use Motor Synchronization to ensure that both motors run
at the same speed, even if something unexpected happens to one of them.

1. Open ROBOTC and start a new program.

1. Create new program
Select File > New to create a
blank new program.

2. Add the basic framework for a program.

Improved Movement Synchronized Motors (cont.)

task main()
{

}

2. Add this code
Add a task main() {}.

1
2
3
4
5

3. Engage Motor Synchronization on the robot, with the sync mode set to “synchBC”.
The special term synchBC defines B and C as the motors to be synchronized.

task main()
{

 nSyncedMotors = synchBC;

}

3. Add this code
Engage Motor
Synchronization for
Motors B and C, with
B set as the master.

1
2
3
4
5
6

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

Checkpoint
The program will now operate motors B and C in Synchronized mode. The order of the
letters BC in “synchBC” does matter, because the two motors in a synchronized setup are not
completely equal. Of the pair, one of the two motors will take the lead, and the other will
play a more reactive role.

The motor B (the first letter in “synchBC”) is called the Master motor, and C (the second one)
is called the Slave motor. All commands to the motor pair, such as speed or braking
commands, are issued through the Master motor.

The Slave motor, C in this case, doesn’t receive a speed command. Instead, we give it a
ratio command. This ratio is defined as a percentage of the first motor’s position. For
moving forward, you always want the two motors to be at the same position, so we’ll set the
Slave motor ratio to be 100% of the Master motor’s.

4. Set the slave motor to run at 100% of the master motor’s speed.

task main()
{

 nSyncedMotors = synchBC;
 nSyncedTurnRatio = 100;

}

4. Add this code
Set the turn ratio for
the slave motor (C) to
be 100%. Slave motor
C will now attempt to
maintain exactly 100%
of the master motor B’s
speed.

Note that the master
motor’s speed has not
been set yet, so the slave
motor B will initially be
running at 100% of 0
(i.e. stopped).

1
2
3
4
5
6
7

5. Set the master motor to a desired speed of 50, and let the robot run for 4 seconds.

task main()
{

 nSyncedMotors = synchBC;
 nSyncedTurnRatio = 100;

 motor[motorB] = 50;
 wait1Msec(4000);

}

5. Add this code
Set a desired speed
of 50 for the master
motor. Master motors
are automatically PID
speed regulated.

1
2
3
4
5
6
7
8
9

10

ROBOTC

Movement

Improved Movement • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

6. Save your program as “LabyrinthSynch”.

6a. Save program As...
Select File > Save As... to save your
program under a new name.

6b. Browse to an
appropriate folder
Browse to or create an appropriately
named folder within your program
folder to save your program.

6d. Save
Click Save.

6c. Rename program
Give this program the
new name “LabyrinthSynch”.

7a. Compile and Download
Click Robot > Compile and
Download Program.

7b. Run the program
Click “Start” on the onscreen
Program Debug window.

5. Download and Run.

ROBOTC

Movement

Improved Movement • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 nSyncedMotors = synchBC;
 nSyncedTurnRatio = -100;

 motor[motorB] = 50;
 wait1Msec(4000);

}

1
2
3
4
5
6
7
8
9

10

Improved Movement Synchronized Motors (cont.)

Checkpoint
The motors are now constantly updating themselves to maintain identical positions as they move.
If one motor happens to stop, the other motor will adjust, and maintain 100% of the new position!

Finally, motor synchronization is useful for far more than just going straight. Cleaning up turning
is also quite easy. As you saw when you first encountered turns, all you need to do is set the
motors to move at different speeds. To turn in place, the motors should go different speeds. For a
point turn, they should be completely opposite. The Slave motor should go -100% of the Master
motor’s speed.

8. Change the sync ratio to -100% to make the robot turn instead of moving straight.

8. Modify this code
Change the sync ratio
100% to -100% to make
the motors turn in exactly
opposite directions.

9a. Compile and Download
Click Robot > Compile and
Download Program.

9b. Run the program
Click “Start” on the onscreen
Program Debug window.

9. Download and Run.

ROBOTC

Movement

Improved Movement • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

End of Section
Motor synchronization allows you to control your robot in a way that prioritizes motor
alignment over motor speed. This is a trade-off, but one that may be favorable when the
most important thing is getting your robot to go straight.

ROBOTC

Improved Movement Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Quiz

1. What factor or factors affect the robot’s ability to move in a straight line?
 a. Motor manufacturing tolerances
 b. Robot weight distribution
 c. Frictional forces in the robot’s drive train
 d. All the above

3. The command nSyncedTurnRatio=100; would tell the slave motor to turn:
 a. at the same rate and in the same direction as the master.
 b. at the same rate and in the opposite direction of the master.
 c. at 100 degrees per second, in the same direction as the master.
 d. at full power forward.

4. The PID algorithm adjusts:
 a. the power level of an individual motor to achieve a target speed.
 b. two motors’ powers to keep them together at all times.
 c. a motor’s gear ratio to achieve a target power.
 d. the amount of friction in a motor to make it run more smoothly.

2. “Closed-loop” control describes a system:
 a. that monitors its own performance and adjusts its output to achieve a desired outcome.
 b. whose specifications are kept secret.
 c. in which a Loop control structure with matching opening and closing punctuation is used.
 d. which is ring-shaped.

5. Write the piece of code that would establish a Synchronized relationship between
 motors B and C, with C as the master and B as the slave in the space below.

1
2
3
4

Movement

NAME DATE

ROBOTC

Obstacle Course Challenge© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Materials Needed

Obstacle Course Challenge

• Black electrical tape
• Red electrical tape
• Scissors (or cutting tool)

4’ 9.75” 11.5”

1’ 5.75”

3’ 9”

Note: Diagrams are not drawn to scale

Challenge Description
This challenge includes obstacles which forces students to use sensors in order to get to the
goal area. The robot must first begin at the starting area, touch the wall, follow a line, get to
the calibration area using the Sonar, Touch, or Light sensor, and finally getting to the goal.

Board Specifications

1

5

1

2

• Ruler (or straight edge)
• 3 Styrofoam cups

Starting area.

Touch the box.

Sensing

• 4 Books
• 1 LEGO Box container

LEGO
Box

3

4

Follow the line while
avoiding obstacles.

Get to this calibration area.

2

3

4

5 Goal area.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

We’ve learned a lot about how to make the robot move, including how to make it go forward and
backward for specific lengths of time, how to adjust its speed, and how to make it go as straight
as possible. But motor control alone won’t be enough to let the robot to stay on the obstacle
course below, because we don’t know exactly where the robot will start.

Turn left
To get from position 1 to position 2,
the robot has to turn left just in front
of the wall, at the red circle. In this
challenge, we don’t know exactly
where the robot will start in the red
hatched area. It is therefore impossible
to make the robot turn in the correct
place using motor control only.

We know we want the robot to make a left turn just in front of the obstacle course wall. What we
need is a way for the robot to find out where that wall is, and adjust its course accordingly. In this
lesson, we’ll attach a Touch Sensor to the robot and use it to detect the wall. By using feedback
from the sensor, we can make the robot turn in the correct place no matter how far away from the
wall it started.

Wall Detection Touch vs. Timing

Touch Sensor
The Touch Sensor, above, can enable the robot to
detect physical contact with objects like walls.

1

Touch Sensor detecting a wall
A robot uses sensors to gather information from the
environment and uses the information to plan movement.

2

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Touch vs. Timing (cont.)

In this lesson, you will learn to use feedback from a Touch Sensor to let the robot detect
a solid object and adjust its course accordingly.

1. Add the Touch Sensor attachment to the robot (if it doesn’t have one already). Connect the
sensor to Port 1 on the NXT brick. The bumper assembly helps the sensor to detect collisions
that are not centered directly on the sensor’s orange contact surface.

1. Build the Touch Sensor attachment
Building instructions are available through
the main lesson menu. Connect the Touch
Sensor to port 1.

2. Load the program “nxt_wait_for_push.c” on the NXT.

2a. Open sample program
Click File > Open Sample Program.

2b. Open Touch folder
Double-click the “Touch”
folder to open it.

2c. Open nxt_wait_for push
Double-click “nxt_wait_for_push.
c” to open the program.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{
 while(SensorValue(touchSensor) == 0)
 {
 motor[motorA] = 100;
 motor[motorB] = 100;
 }

 motor[motorA] = -75;
 motor[motorB] = -75;

 wait1Msec(1000);
 }
}

Wall Detection Touch vs. Timing (cont.)

Checkpoint
The program should look like the one below.

3. Note that the program has 3 major parts. (Lines 1-35 have been omitted, since they contain
only comments that do not affect how the program works.)

Auto

36
37
38
39
40
41
42
43
44
45
46
47
48
49

While() loop
Next, we have the while()
loop. It’s called a “while”
loop because it will do
something while certain
conditions continue.

const tSensors touchSensor = (tSensors) S1;

Movement commands
Finally, we have two sets of
movement commands: one
inside the while() loop, and
one right after the while()
loop. The positioning of
these commands inside
and outside of the loop is
important, but otherwise,
these are the same
commands you have already
used to move the robot in
previous programs.

Checkpoint
You will learn more about the Sensor Setup and while() loop parts of the program later in this
lesson. For now, however, look carefully at the motor commands. Which motor ports do they
address? What ports are your motors plugged into? Do they match?

The sample program assumes your motors would be on ports A and B, but your robot’s design
has them on C and B! The program will not work without modifications. Software (programs) and
hardware (like the physical robot) are dependent on each other to produce correct behaviors.

Touch Sensor setup
At the top of the program
is a special line that tells
ROBOTC to look for a Touch
Sensor on Port 1, and to call
it “touchSensor”.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{
 while(SensorValue(touchSensor) == 0)
 {
 motor[motorC] = 100;
 motor[motorB] = 100;
 }

 motor[motorC] = -75;
 motor[motorB] = -75;

 wait1Msec(1000);
 }
}

Wall Detection Touch vs. Timing (cont.)

4. Modify the motor[] commands to send power to the correct motors by changing all the motorA
references to motorC (motorB is the same in both).

Auto

36
37
38
39
40
41
42
43
44
45
46
47
48
49

const tSensors touchSensor = (tSensors) S1;

4. Modify this code
Change the motorA
references to instead use
motorC, where your left
motor is actually attached.

5. Download and run the program.

5a. Download the program
Click Robot > Download Program.

5b. Run the program
Click “Start” on the onscreen
Program Debug window.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Touch vs. Timing (cont.)

6a. Forward until touch
The robot runs forward as long as the
touch sensor is not pressed in.

End of Section
We’ve taken a crucial step forward in solving the problem of getting the robot to adjust
its course when it touches a wall by adding a Touch Sensor attachment, downloading a
program, and demonstrating that the robot will reverse its direction when it reaches a solid
object. The next step is to understand the program, so that you can write one like it yourself.

6b. React to touch
When the touch sensor is
pressed, the robot will back up
for one second, then stop.

6c. End
The program ends after one
touch-and-reverse cycle.

6. Run the program on the Obstacle Course board. Observe the sample program’s behaviors.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Now that we’ve seen the wall detection program work, we’re going to take it apart it piece by
piece to understand how it works. In this lesson we’ll examine the first section of the program,
where we set up the sensors. This configuration process tells the robot which sensors are present,
and which ports they’re connected to.

In ROBOTC, sensor configuration is done through the Motors and Sensors Setup dialog, which
we’ll go through in this lesson. You don’t have to, and shouldn’t, type any code inside the sensor
configuration section at all, unless you’re an experienced programmer.

Wall Detection Configuring Sensors

task main()
{
 while(SensorValue(touchSensor) == 0)
 {
 motor[motorC] = 100;
 motor[motorB] = 100;
 }

 motor[motorC] = -75;
 motor[motorB] = -75;

 wait1Msec(1000);
 }
}

Auto

36
37
38
39
40
41
42
43
44
45
46
47
48
49

const tSensors touchSensor = (tSensors) S1; Touch Sensor set up
At the top of the program
is a special line that tells
ROBOTC to look for a Touch
Sensor on Port 1, and to call
it “touchSensor”. Don’t type
in this area unless you know
what you’re doing!

ROBOTC

Sensing

Wall Detection / Touch • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

In this lesson, you will learn how to use the Motors and Sensors Setup dialog to configure
the Touch Sensor.

1. Begin by saving the program under a new name. You can’t save changes directly to the sample
programs, and you want to have a copy of the program for yourself anyway.

1a. Save program As...
Select File > Save As... to save your
program under a new name.

1b. Browse to an
appropriate folder
Browse to or create an appropriately
named folder within your program
folder to save your program.

1d. Save
Click Save.

1c. Rename program
Give this program the
new name “wall_touch”.

ROBOTC

Sensing

Wall Detection / Touch • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

2. Open the Motors and Sensors Setup menu, and select the A/D Sensors tab.

2a. Open “Motors
and Sensors Setup”
Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.

2b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

3b. Sensor “Type“
Identifies the sensor attached to
sensor port 1 as a Touch Sensor.

3. Note the Motors and Sensors Setup menu configuration. To the right of S1 are boxes indicating
the name and type of sensor attached to sensor port 1.

3a. Sensor “Name“
Assigns the name “touchSensor” to
the sensor on port 1. “touchSensor”
is a name chosen for convenience,
following certain rules (see below).

Naming Things in ROBOTC

Here are some basic rules for giving names to things (such as Sensors) in ROBOTC:

Words that are already part of the ROBOTC language (like “while” or “motor”)
cannot be used as names
Names may not contain spaces
Names may not contain punctuat!on
Names may not 321START with a number, but may contain them anywhere els3
CaPiTaLiZaTiOn maTTeRs

•

•
•
•
•

ROBOTC

Sensing

Wall Detection / Touch • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

4. Let’s try changing some settings to see what happens. Move all the Touch Sensor entries
in the menu from S1 to S2.

4a. Delete “touchSensor” from S1
Delete the name “touchSensor” from the
S1 Name box. The Type box for S1 will
change to read No Sensor after your
cursor leaves the Name area.

4b. Enter “touchSensor” in S2
Type the name “touchSensor” in
the S2 Name box.

4c. Change S2 Type to Touch
Select Touch from the S2 Type
dropdown menu.

4d. Click OK
Click OK to save your sensor
configuration changes.

Checkpoint
The first line of the program should now look like this. Make sure that the first line of the
program contains “S2” and not “S1”. The sensor on S2 is named touchSensor and set to
work as a Touch Sensor.

Auto
Auto

const tSensors touchSensor = (tSensors) S2;

ROBOTC

Sensing

Wall Detection / Touch • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

5. Download and run the program, but before you run it, pick up or block up the robot so it
doesn’t run into anything.

5b. Download the program
Click Robot > Download Program.

5c. Run the program
Click “Start” on the onscreen
Program Debug window.

6. While the program is running, press the Touch Sensor. The robot continues to move forward,
rather than reversing direction.

6. Press the touch sensor
Press the orange button on the
Touch Sensor and observe the
robot’s reaction (or lack thereof).

5a. Block up the robot
Place an object under the robot so that
its wheels can’t reach the table. This
lets you run the robot without having
to chase it around.

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

7. Stop the program to conserve battery power.

7. Stop the program
Click “Stop” on the Program
Debug window.

8. Bring up the NXT Device Control Display window to find out why the Touch Sensor no longer
makes the robot reverse direction. If the NXT Device Control Display window is already visible,
skip this step.

8a. Bring up the Debugger
Select Robot > Debugger.

8b. Bring up the Device Window
Select Robot > Debug Window >
NXT Devices.

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

9a. Observe S2
Find the S2 box under Sensor in the
NXT Device Control Display. Under
Type, it should say “Raw Value”.

9b. Change Refresh Rate
to Continuous
If you see a button labeled
”Continuous”, press it.
Otherwise, skip this step.

9. Observe the changes in the NXT Device Control Display window when you run the program,
and when you touch the Touch Sensor.

Wall Detection Configuring Sensors (cont.)

9c. Start the program
Click Start in the Program
Debug window.

9d. Observe “Type” of S2
The “Type” of sensor on S2 is now
a Touch Sensor, just as we set it
to be.

9f. Press the Touch Sensor
and watch the S2 value
Press the Touch Sensor, and
watch for a change (or lack of
change) in the “Value” box in
S2. Should it change?

9e. Observe “Value” of S2
A Touch Sensor will show a
“Value” of 1 if the sensor is
pressed, and a value of 0
otherwise. What does this
value indicate?

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Configuring Sensors (cont.)

Checkpoint
Now when you press the Touch Sensor, the S2 value turns to 1. A value of 1 indicates “pressed”
on a Touch Sensor. Also, the program now works as it did before. When you press the Touch
Sensor, the motor now reverses for one second and stops.

10. Even when you press the Touch Sensor, the S2 value remains 0. This makes sense, because
the Touch Sensor is attached to Port 1, not Port 2. Try connecting the Touch Sensor to port 2
and see what happens.

Not Pressed
The value for the
sensor S2 is 0 while
the Touch Sensor
remains unpressed

Pressed
The value for the
sensor S2 is 1 when
the Touch Sensor is
pressed.

10a. Switch sensor ports
Disconnect the Touch Sensor from port 1
and reconnect it to port 2 on the NXT.

10b. Press the Touch Sensor and watch the S2 value
Press the Touch Sensor, and watch for a change (or lack of
change) in the S2 Value in the NXT Device Control Display.

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

11a. Delete “touchSensor” from S2
Delete “touchSensor” from the S2
Name box.

11b. Enter “touchSensor” in S1
Type “touchSensor” in the S1
Name box.

11. Use the Motors and Sensors Setup menu to change the sensor settings back to the way they
were so we can move on with the program.

Wall Detection Configuring Sensors (cont.)

End of Section
You have successfully used the Motors and Sensors Setup menu to configure the Touch Sensor to
work on port 2, and now changed it back to port 1. This is the universal process for configuring
sensors in ROBOTC. You also learned to use the NXT Device Control Window to view sensor
values. Finally, you also saw the two values the Touch Sensor can provide: 0 (unpressed) and 1
(pressed). It’s time to move on to the next lesson, where you will examine the part of the program
called the while loop.

11c. Change S1 Type to “Touch”.
Select “Touch” from the S1 “Type”
dropdown menu.

11d. Click OK
Click OK to confirm the change.

11e. Switch sensor ports
Disconnect the Touch Sensor from
port 2 and reconnect it to port 1

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection The while() Loop

In this lesson, you will learn what a while() loop is and how it works.

Your robot’s ability to sense and respond to touch revolves around a structure in the program
called a while() loop. The while() loop in this program uses the Touch Sensor feedback to decide
whether the robot should continue on its current course, or back up and turn.

 while(SensorValue(touchSensor) == 0)
 {
 motor[motorC] = 100;
 motor[motorB] = 100;
 }

38
39
40
41
42

Below is the code for the sample program’s while() loop. Reading this statement out loud tells you
pretty much exactly what it does:

“While the sensor value of the Touch Sensor is equal to zero, run motors C and B at 100% power.”

The decision-making nature of the while() loop may not be apparent at first, but making
decisions that control the flow of the program is actually the while() loop’s main purpose. The
while() loop above instructs the program to use the Touch Sensor’s status to decide how long to
keep the motors running.

 while(SensorValue(touchSensor) == 0)
 {
 motor[motorC] = 100;
 motor[motorB] = 100;
 }

38
39
40
41
42

The condition enclosed in
parentheses “()”

The word “while”

A group of commands
enclosed in curly braces “{}”

When the program reaches most commands, it runs them, and then moves on. When the
program reaches the while() loop, however, it steps “inside” the loop, and stays there as long as
the while() loop decides that it should. The loop also specifies a set of commands that the robot
will repeat over and over as long as the program remains inside the loop.

The programmer specifies in advance under what conditions the program should remain in the
loop, and what commands the robot should repeat while inside the loop.

The while() loop therefore has three parts, in order:
The word “while”
The condition enclosed in parentheses “()”
A group of commands enclosed in curly braces “{}”

•
•
•

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

End of Section
The while() loop allows the program to make a decision about program flow, based on a true-
or-false statement. It works by checking to see if a (condition) is true, then, if it is true, running a
group of {commands}, and looping back to recheck the (condition). If the (condition) ever stops
being true, the while() loop skips over the {commands}, and moves on to the next section of
the program.

In the wall_touch program, the robot will move forward at full power while the Touch Sensor
remains unpressed, then exit the loop and move on to the rest of the program. A well-planned
choice of commands to follow the loop tell the robot to back away from the obstacle afterwards.

Wall Detection The while() Loop (cont.)

 while(SensorValue(touchSensor) == 0)
 {
 motor[motorC] = 100;
 motor[motorB] = 100;
 }

38
39
40
41
42

The condition enclosed in
parentheses “()”

The word “while”

A group of commands
enclosed in curly braces “{}”

while
A while() loop always starts with the word “while”.

The (condition)
The statement in parentheses specify the condition(s) under which the loop should continue
looping. These conditions are specified in the form of a true-or-false statement, like the one in the
example above, “The sensor value of the Touch Sensor is equal to zero”. The statement is either
true (the value IS zero) or it is false (the value IS NOT zero).

The true (or false) value of the statement determines whether the loop will continue or end. As
long as the condition is true, the while loop will continue to run. If the condition becomes false,
the loop will end and the program will move on to the commands that come after it.

Example
In the code above, the condition is “The sensor value of the Touch Sensor is equal to zero.” This (condition)
statement is true as long as the Touch Sensor reads zero. Recall from the previous lesson that the Touch Sensor
reads 0 whenever its button is not pressed in, and it reads 1 when the button is pressed in.

So, as long as the Touch Sensor button is NOT pressed, the sensor value will be zero, and the condition will be
true. As long as the condition remains true, the commands inside the curly braces will run. If the Touch Sensor
is ever pressed, its value will become 1, not 0, and the condition will become false. The loop would then end.

The {commands}, sometimes called the “body”
These are the commands that are run while the condition is true. The commands inside the braces
are run in order. When they have all been run, the program goes back to check the condition
again. If the (condition) is still true, the loop continues and the {commands} are run again. In the
code shown above, the {commands} are to run both of the robot’s motors at full power forward,
and the program will do that as long as the touch sensor remains unpressed.

	 	 while(condition)
	 	 {
	 	 	 commands;
	 	 }

General form
while() loops
always follow the
pattern shown here

ROBOTC

Sensing

Wall Detection / Touch • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Putting it Together

Now that you have examined and worked with the pre-written “Wait for Touch” program, it’s
time to write one on your own.

1. Start with a new program.

1. Create new program
Select File > New to create a
blank new program.

2. Remember the program has to do three things:
Configure the sensor port to recognize a Touch Sensor on Port 1
Create a while() loop that runs forward while the touch sensor is unpressed
Back away from the obstacle afterwards

•
•
•

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

3a. Open “Motors and
Sensors Setup”
Select Robot > Motors and Sensors
Setup to open the Motors and
Sensors Setup menu.

3b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

3c. Give S1 the Name “bumper”
In the “Name” box next to S1,
type “bumper”.

Wall Detection Putting it Together (cont.)

3. So let’s do them in order, starting with the first: configure the sensor port.

3d. Designate S1 as
a Touch Sensor
Select “Touch” from the
dropdown box in the
“Type” area.

3e. Click OK
Click the “OK” button to save
your changes.

ROBOTC

Sensing

Wall Detection / Touch • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

4. ROBOTC will want you to save your program at this point. Save your program with your other
programs as ”touch1”.

Wall Detection Putting it Together (cont.)

1a. Select “Yes”
Save your program when prompted.

1b. Browse to an appropriate folder
Browse to or create an appropriately named
folder within your program folder to save
your program.

1d. Save
Click Save.

1c. Name program
Give this program the name
“touch1”.

ROBOTC

Sensing

Wall Detection / Touch • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

}

Wall Detection Putting it Together (cont.)

Auto
Auto

1
1
1
1
1
1

5. Add this code
Create the basic
task main() {}.

5. Create task main().

Auto
Auto

1
2
3
4

6. Add this code
Add the while() loop: the word
“while”, the parentheses to hold
the condition, and the curly
braces to hold the commands.

6. Create the while() loop.

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while()
 {

 }

}

Auto
Auto

1
1
1
1
1
1
1
1
1
1
1
1

Auto
Auto

1
2
3
4

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while()
 {

 }

}

Auto

Auto

1

1

1

1

1

1

1

1

1

1

1

1

Checkpoint
Your program should now look like this, with a while() loop within task main(). Line numbers
will not update until you compile, so the line of 1s is normal.

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Putting it Together (cont.)

7. Write the condition.

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

}

Auto
Auto

1
2
3
4

6. Add this code
The condition should test
whether the Touch Sensor
is unpressed. Thus, the
condition is that the Touch
Sensor value is equal
to zero. Recall that ==
means “is equal to”.

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(bumper) == 0)
 {

 }

}

Auto
Auto

1
1
1
1
1
1
1
1
1
1
1
1

7. Tell the robot what to do while the Touch Sensor is unpressed: go forward at a prudent
50% power (since are expecting to run into an object at some point).

6. Add this code
Turn Motors A and B on
forward at full speed.
Because this code is inside
the while loop’s {} braces,
they will be run repeatedly
as long as the condition
remains true.

Auto
Auto

1
1
1
1
1
1
1
1
1
1
1
1
1

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(bumper) == 0)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

}

ROBOTC

Sensing

Wall Detection / Touch • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection Putting it Together (cont.)

9. Tell the robot what to do after the Touch Sensor is pressed and the while loop ends.

Auto
Auto

1
2
3
4

9a. Add this code
Run motors A and B
backward at 50% power.
Because this code comes
after the } of the while
loop, it will be run only
after the loop is done.

Thus, the robot will back
up AFTER the loop ends.

const tSensors bumper = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(bumper) == 0)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

 motor[motorC] = -50;
 motor[motorB] = -50;
 wait1Msec(1000);

}

Auto
Auto

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

9b. Add this code
Leave the motors
running for 1 second.

End of Section
Download and run your program. Congratulations, you have now programmed your robot to
use a sensor to detect and respond to its environment! In fact, you’ve just created your first true
robot. The ability to use sensor feedback to govern its own behavior is what sets a robot apart
from other machines.

Download the program
Click Robot > Download Program.

Run the program
Click “Start” on the onscreen
Program Debug window.

Forward until touch
The robot runs forward as dictated by the
while() loop, then, when the touch sensor
is pressed and the loop ends, the program
continues on to the backing-up commands.

ROBOTC

Wall Detection Touch Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection (Touch) Quiz

2. What form does feedback from the Touch Sensor take?
 a. A number between 0 and 255, indicating how hard the button is being pressed.
 b. A number, either 0 or 1, indicating Pressed or Not Pressed.
 c. Pounds per square inch of pressure.
 d. A or B, depending on how the user configures the sensor.

4. In general, when does a while loop run the body of its code?
 a. When its condition is true.
 b. When its condition is false.
 c. When the sensor gives feedback above the value of threshold.
 d. If the motor has been given a power level and assigned a wait state in milliseconds.

1. The recommended method of configuring sensors in ROBOTC is to use the Motors and Sensors
 Setup menu shown above.
 a. True
 b. False

while(SensorValue(touchSensor) == 1)
{
 motor[motorC] = 100;
 motor[motorB] = 0;
}

1
2
3
4
5

3. In plain English (or pseudocode), describe what the following code does.

Sensing

NAME DATE

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Robots are precise, reliable, intelligent machines, but only when they are programmed to both
sense and respond appropriately. Using a sensor which can only detect an obstacle by contact
has drawbacks. You would rather not have to bump into something to know it’s there, and neither
would your robot.

Wall Detection A Sonic Sojourn

Ultrasonic Sensor detecting a wall (1)
The Ultrasonic Sensor sends out
ultrasonic sound waves.

Ultrasonic Sensor detecting a wall (2)
The sound waves hit an obstacle and deflect back.
The Ultrasonic Sensor receives the deflected sound
waves, then calculates the difference between the time
it sent the sound waves and the time it received them.
Since the waves travel at a known speed (the speed of
sound), the Ultrasonic Sensor can then calculate the
distance to the obstacle (in this case, 40 centimeters).

The program you’ll write in this lesson will work in a very similar way to the Touch Sensor program
you wrote in the previous unit, but instead of using a Touch Sensor to detect obstacles by contact,
it will use an Ultrasonic Sensor to detect them at a distance.

Above right is an Ultrasonic Sensor. Using the same physical principle that a bat or a submarine
uses to find its way around, the Ultrasonic Sensor measures distances using sound. It then tells the
robot how far away the nearest object in front of it is.

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection A Sonic Sojourn (cont.)

In this lesson, you will learn to use feedback from an Ultrasonic Sensor to make the robot
detect a solid object and stop when it’s 25 cm away.

1. Build the Ultrasonic Sensor attachment, and connect it to your robot.

2. Open the “wall_touch” program you wrote for the previous section.

2a. Open Program
Select File > Open and Compile
to retrieve your old program.

2b. Select the program
Select “wall_touch”.

2c. Open the program
Press Open to open
the saved program.

1. Build the Ultrasonic Sensor attachment
Building instructions are available through the
main lesson menu. Connect the Ultrasonic
Sensor to port 1.

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Checkpoint
The program should look like the one below.

3. Save this program under a new name, “sonar1”.

3a. Save program as...
Select File > Save As... to save your
program under a new name.

3c. Name the program
Give this program
the name “sonar1”.

3d. Save the program
Press Save to save the program
with the new name.

3b. Browse
Browse to and/or create
an appropriate folder.

Wall Detection A Sonic Sojourn (cont.)

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection A Sonic Sojourn (cont.)

4. Open the Motors and Sensors Setup menu, and go to the Sensors tab.

4a. Open “Motors
and Sensors Setup”
Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.

4b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

5b. Make type “SONAR 9V”
Use the dropdown box to make
“SONAR 9V” the sensor type.

5. Use the Motors and Sensors Setup interface to name the S1 sensor “sonarSensor”,
then select “SONAR 9V” as its type.

5a. Name sensor “sonarSensor”
Enter the name “sonarSensor”
in the S1 name box.

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

const tSensors sonarSensor = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(bumper) == 0)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

 motor[motorC] = -50;
 motor[motorB] = -50;
 wait1Msec(2000);

}

Wall Detection A Sonic Sojourn (cont.)

Checkpoint
Your program should look like this. The while() loop is the focal point of its structure.

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

The (condition)
As long as the (condition)
is satisfied, the loop will
continue repeating.

while
The keyword while signals
the beginning of the
while loop.

The {commands}
These commands are
repeated over and over
while the (condition)
remains true.

The program uses the while() loop to check a certain (condition) to see whether it should keep
looping or not. The (condition) right now is satisfied as long as the bumper is 0, or unpressed.
The robot keeps running as long as this is true.

But now we’re using the Ultrasonic Sensor. Having the (condition) look for a sensor value of 0
no longer makes sense, because the Ultrasonic Sensor can report a large range of values, not
just one or zero. Remember, the Ultrasonic Sensor measures distance. It gives you a number that
indicates the number of centimeters to the nearest detectable object in front of the sensor. It could
be 1, 250, or anything in between.

The while() loop, however, doesn’t want 250 different values, it just wants to make one decision:
continue looping or go on to the next section of the program. The task is to get the robot to stop
around 25 cm away from the obstacle. Ask yourself when the robot needs to run, and when it
needs to stop. “The robot should run while...”.

We’d like the robot to move forward while it is more than 25 cm away from the box, that is, while
the distance to the box is greater than 25 (centimeters). Once the robot gets closer than 25cm, it
should stop and move on to the next part of the program.

So, let’s try that.

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

const tSensors sonarSensor = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(sonarSensor) > 25)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

 motor[motorC] = -50;
 motor[motorB] = -50;
 wait1Msec(2000);

}

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Wall Detection A Sonic Sojourn (cont.)

5b. Modify this code
Change the while() loop
condition’s value so that
it will check whether the
sonarSensor’s value is
greater than 25 cm.

5. Change the loop’s condition to make it run while the Ultrasonic Sensor’s value is greater
 than 25cm.

5b. Change sensor name
Change the sensor name in
the while () loop condition to
“sonarSensor”.

6. Download and run the program. Disconnect the robot and move it onto the course if needed.

6a. Download the program
Click Robot > Download Program.

6b. Run the program
Click “Start” on the onscreen
Program Debug window, or
use the NXT’s on-brick menus.

6c. 25cm Stop
The robot runs forward until
the Ultrasonic Sensor detects
an object < 25 cm away.

ROBOTC

Sensing

Wall Detection / Sonar • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

const tSensors sonarSensor = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(sonarSensor) > 40)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

 motor[motorC] = -50;
 motor[motorB] = -50;
 wait1Msec(2000);

}

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Wall Detection A Sonic Sojourn (cont.)

7. Modify this code
Change the while() loop
condition’s value so that
it will check whether the
sonarSensor’s value is
greater than 40 cm.

7. So we’ve succeeded in making the robot stop when it’s 25 centimeters from an obstacle.
Now let’s try making the robot stop at some other distance from an obstacle.

8. Download and run the program. Disconnect the robot and move it onto the course if needed.

8a. Download the program
Click Robot > Download Program.

8b. Run the program
Click “Start” on the onscreen
Program Debug window.

8c. 40cm Stop
The robot runs forward until
the Ultrasonic Sensor detects
an object < 40 cm away.

ROBOTC

Sensing

Wall Detection / Sonar • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection A Sonic Sojourn (cont.)

End of Section
You have modified your program to stop when the robot detects an object closer than a
specified distance.

The number that you use to determine how far the robot stops is called a threshold. Thresholds
are values that set a cutoff in a range of values, so that even though there are many possible
values, every one of them will fall either above the threshold or below it.

In the case of the Ultrasonic Sensor, we set the threshold to 25 in our initial program, and
made the distinction that values “greater than 25” will let the loop continue running, while
values less than or equal to 25 will make the loop stop.

Then we changed the threshold to a different distance value, and saw how it affected the
robot’s behavior. By using thresholds, we can make use of the range of values an Ultrasonic
Sensor provides to make a robot stop at whatever distance from an obstacle we want.

ROBOTC

Wall Detection Sonar Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection (Ultrasonic) Quiz

2. In ROBOTC, the _____________ command is used to find the value of a sensor.
 a. SensorDistance(sensor_name)
 b. SensorValue(sensor_name)
 c. Sensor(sensor_name)
 d. SensorMeasurement(sensor_name)

1. The Ultrasonic sensor uses sound to determine:
 a. Direction
 b. Contact
 c. Temperature
 d. Distance

3. In the ROBOTC program, it is not necessary to specify the units returned by the
 ultrasonic sensor because the NXT Ultrasonic Sensor always measures in:
 a. inches.
 b. centimeters.
 c. fractional units.
 d. decimal units.

4. The ultrasonic sensor sends and then receives the deflected sound waves and uses the difference
 between the time sent and time received to calculate the distance from an object.
 a. True
 b. False

5. A robot at the museum is programmed to ask visitors to please step back
 if they come within six feet of a very fragile glass sculpture.
 How might a threshold be used to implement this behavior?

Sensing

NAME DATE

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark Light Sensor

Touch Sensor
The Touch Sensor detects physical contact with the
orange trigger, and returns a SensorValue of 1 if it is
pressed in, or 0 if it is not.

Ultrasonic Sensor
The Ultrasonic (sometimes called Sonar) Sensor sends
out pulses of sound and measures the time it takes for
the sound waves to bounce off an object and return.
Since the speed of sound is known, the sensor calculates
the distance based on the time, and reports the distance
in centimeters as its SensorValue

In this lesson, you will learn how the Light Sensor works, and how its feedback compares to
the Touch and Ultrasonic Sonar sensors.

Detects:

Feedback:

Typical use:

Sample code:

Physical contact

0 if unpressed, 1 if pressed

Bumper

while (SensorValue(touchSensor) == 0)
will run the while() loop as long as the
touch sensor is not pressed.

Detects:

Feedback:

Typical use:

Sample code:

Distance to object

Range to object in centimeters (1-250)

Obstacle detection and avoidance

while (SensorValue(sonarSensor) > 25)
will run the while() loop as long as there
is no object detected within 25 cm.

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward until Dark Light Sensor (cont.)

Light Sensor
The Light Sensor (in the normal Active mode) shines a
light out in a cone in front of it, and measures how much
light comes back to it, from either reflection or ambient
sources. See additional explanation below.

Detects:

Feedback:

Typical use:

Sample code:

Reflected + Ambient light

Brightness (0-100)

Line detection

while (SensorValue(lightSensor) > 40)
will run the while() loop as long as the
light sensor value remains brighter
than 40.

And now, let’s look at a new sensor.

This is the Light Sensor. When turned on, it shines a cone of red light out from the red LED, and
measures how much of it comes back into the light detector through the clear lens.

Clear lens
A light detector measures
how much light comes back.

Red lens
A cone of red light shines out
from the red LED.

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The light sensor can detect the basic colors of objects and surfaces by aiming directly at them at
close range. Light-colored surfaces, like this bright grey table, reflect a large amount of the light,
and produce a high sensor reading. Dark-colored surfaces, like this strip of black electrical tape,
reflect very little light, and produce a low sensor reading.

High readings vs. low readings can therefore be used to distinguish light surfaces from dark
ones. To make this work for the while() loop, we’ll need to use the same technique we used with
the Ultrasonic Sensor: set a threshold value to create a “cutoff” point between light and dark.

The sensor gives a light intensity reading of 0-100. But unlike the Ultrasonic Sensor, where the
number was in centimeters, the Light Sensor’s values are relative only, and do not correspond to
any set system of units. In fact, any light source – lamps, sunlight, shadows – and even the height
of the light sensor off the table can affect how much light the Light Sensor sees for the same
surface. So how can you set a fair cutoff (threshold) between light and dark?

In the next section, you will use the NXT’s View Mode to see for yourself what sorts of numbers
you get for different surfaces. You will use these real-world readings as reference values for light
and for dark. Your readings will give you measured “anchors,” that take into account the colors
of surfaces, and lighting conditions, and will allow you to make a proper choice of threshold.

Forward until Dark Light Sensor (cont.)

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

1. View the Reflected Light values in View Mode.

Forward until Dark Thresholds 201
Reminder! Light sensor readings and other numbers used in this printed guide may
not be right for your environment. Your room’s lighting and the position of the sun and
shadows will cause light sensor readings to vary. Measure often!

So higher is brighter, and lower is darker, but if you remember from the last time we worked with
a large range of values, we set a threshold to separate the two values we care about. Before we
can set a threshold for the Light Sensor, we need to know what values mean ‘Light” and what
values mean “Dark.” Let’s take some readings to find out.

In this lesson, you will learn how the Light Sensor works, and how its feedback compares to
the Touch and Ultrasonic Sonar sensors.

1a. Turn on NXT
Turn on your NXT if it is not already on.

1b. Navigate to View Mode
Use the left and right arrow buttons to find
the View option, and press the Orange
button to select it.

1c. Select Reflected Light
Use the left and right arrow buttons to find the
Reflected Light option, and press the Orange
button to select it.

Caution! Do not choose “Light Sensor*”!
Light Sensor* (and all sensors with a * at the
end of their names) refers to the old RCX-
generation Light Sensor, and will not provide
the correct readings for the NXT Light Sensor.

1d. Select Port 1
Make sure your Light Sensor is plugged into
Port 1 on the NXT. Select Port 1 on screen.

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

2. Place the robot so the light sensor is over the light surface, move your hand away (it can cast a
shadow and mess up your readings), and record the reading on the screen.

Checkpoint
You are now seeing the sensor’s value live, in real time.

Forward until Dark Thresholds 201 (cont.)

2a. Place robot over light surface
Position the robot so that the light sensor
shines on a light-colored surface.

2b. Record ”light” sensor value
On a separate sheet of paper, write down
the Light Sensor value for a “light” surface.

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

4. A fair place to set the cutoff line is right in the middle between these two values. That would be
the average of these two values.

Forward until Dark Thresholds 201 (cont.)

2a. Place robot over dark surface
Position the robot so that the light sensor
shines on a dark-colored line.

2b. Record ”dark” sensor value
On a separate sheet of paper, write down
the Light Sensor value for a “dark” surface.

3. Now, place the light sensor over a part of the dark line, and record that reading.

value 1 + value 2

2
Threshold Value=

4a. Add “light” and “dark” values
The first step in finding an average is to find
the sum of the two values.

4b. Divide sum by 2
Since there were two values (light and dark),
divide the sum by 2 to find the average.

4c. Write down Threshold value
This average is fairly situated, exactly
between the other two values. Record this

End of Section
With the threshold set at the point indicated by the red line, the world of light sensor readings
can now be divided into two categories: “light” values above the threshold, and “dark” values
below the threshold. This distinction will allow your robot to find the line, by looking for the “dark”
surface on the ground.

The threshold you have calculated marks the cutoff line for your lighting conditions. Any sensor
values above the threshold value will now be considered light, and any below it will be
considered dark.

ROBOTC

Sensing

Forward Until Dark / Light • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward until Dark Wait for Dark

1. Open “sonar1”, the Ultrasonic Sensor program from the Wall Detection (Ultrasonic) lesson.

Reminder! Light sensor readings and other numbers used in this printed guide may
not be right for your environment. Your room’s lighting and the position of the sun and
shadows will cause light sensor readings to vary. Measure often!

So higher is brighter, and lower is darker, but if you remember from the last time we worked with
a large range of values, we set a threshold to separate the two values we care about. Before we
can set a threshold for the Light Sensor, we need to know what values mean ‘Light” and what
values mean “Dark.” Let’s take some readings to find out.

In this lesson, you will use the Light Sensor and the Threshold you calculated in the previous
section to adapt your Ultrasonic Wall Detector program to detect a dark line instead.

1a. Open Program
Select File > Open and Compile
to retrieve your old program.

1b. Select the program
Select “sonar1”.

2c. Open the program
Press Open to open
the saved program.

ROBOTC

Sensing

Forward Until Dark / Light • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward until Dark Wait for Dark (cont.)

Checkpoint. The program should look like the one below.

2. Because we’re going to be changing the program, save it under the new name “ForwardDark”.

2a. Save program as...
Select File > Save As... to save your
program under a new name.

2c. Name the program
Give this program
the name “ForwardDark”.

3d. Save the program
Press Save to save the program
with the new name.

2b. Browse
Browse to and/or create
an appropriate folder.

ROBOTC

Sensing

Forward Until Dark / Light • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward until Dark Wait for Dark (cont.)

3. Open the Motors and Sensors Setup menu, and go to the Sensors tab.

3a. Open “Motors
and Sensors Setup”
Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.

3b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

4b. Make type “Light Active”
Use the dropdown box to make
“Light Active” the sensor type.

4. Use the Motors and Sensors Setup interface to name the S1 sensor “sonarSensor”, then select
“SONAR 9V” as its type.

4a. Name sensor “lightSensor”
Enter the name “lightSensor”
in the S1 name box.

ROBOTC

Sensing

Forward Until Dark / Light • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward until Dark Wait for Dark (cont.)

6. Download and Run the program.

6b. Download the program
Click Robot > Download Program.

6c. Run the program
Click “Start” on the onscreen
Program Debug window.

Tip: If your robot stops immediately
or runs past the line without
stopping, check your light sensor
values using the View mode.
Lighting conditions (position of
the sun, room lighting) may have
changed, and your threshold may
need to be adjusted.

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

5a. Modify this code
Change the while() loop
condition’s value so that
it will check whether
the Light Sensor’s
value is greater than the
threshold value you
calculated in the last
lesson.

const tSensors lightSensor = (tSensors) S1;
//*!!CLICK to edit ‘wizard’ created sensor

task main()
{

 while(SensorValue(lightSensor) > 40)
 {

 motor[motorC] = 50;
 motor[motorB] = 50;

 }

 motor[motorC] = 0;
 motor[motorB] = 0;
 wait1Msec(2000);

}

5. Modify the (condition) in the while() loop to watch for the lightSensor value to be greater than
(brighter than) the threshold.

5b. Modify this code
Change the speed of
Motors C and B to 0
so that the robot stops
when it reaches a
black line, rather than
reversing at 50% power.

ROBOTC

Sensing

Forward Until Dark / Light • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

As a final exercise, consider what would happen if you were to turn the lights off (or on) in the
room where the robot is running. Make your prediction, and test it!

End of Section
When the robot sees “dark” (a value below the threshold), the (condition) is no longer satisfied,
and the program moves on to the stop commands, causing the robot to stop at the dark line.

Forward until Dark Wait for Dark (cont.)

ROBOTC

Forward Until Dark Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark Quiz

2. What type of light does the NXT light sensor use?
 a. Reflected halogen light
 b. LED
 c. Neon light
 d. Fluorescent light

1. One reasonable way of finding a threshold for a light sensor would be to:
 a. use the output value of the LED.
 b. sum up the high and low readings and then divide that by two.
 c. use the high reading and subtract the distance traveled.
 d. calculate the average of the ambient light in the room.

3. A high number reading from the light sensor could mean:
 a. the light sensor is seeing a dark surface which reflects a small amount of light.
 b. the light sensor is seeing a dark surface which reflects no light.
 c. the light sensor is seeing a light surface which reflects a large amount of light.
 d. the light sensor was unable to detect either a light or dark surface and cannot
 make a consistent final reading.

5. What does it mean when the Light Sensor is in “Active Mode”?
 a. It is actively generating its own light using the built-in emitter.
 b. The light sensor is actively controlling the motors.
 c. The light source is turned off, and the sensor is actively searching for outside light.
 d. The light sensor is broken, and you need to actively find a replacement.

while(SensorValue(lightSensor) > 45)
{
 motor[motorC] = 75;
 motor[motorB] = 75;
}

1
2
3
4
5

4. A standard behavior to move until the robot sees a dark line on a light surface looks like
 the following code. Writing directly on the code, change the program above to look for
 a white line on a dark surface instead (assume the threshold value stays the same).

NAME DATE

Sensing

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Now that you’re familiar with a few of the key NXT sensors, let’s do something a little more
interesting with them. This lesson will show you how to use the Light Sensor to track a line.

The trick to getting the robot to move along the line is to always aim toward the edge of the line.
For this example, we’ll use the left edge.

Track the left side
The Light Sensor will be positioned
and programmed to track the left
side of the black line.

Put yourself in the robot’s position. If the only dark surface is the line, then seeing dark means you
are on top of it, and the edge would be to your left. So you move toward it by going forward and
left by performing a Swing Turn.

Line Tracking Basic Lesson

Swing turn left
Therefore, turn left toward the edge of the line.

Light Sensor sees dark
The robot is over the dark surface. The left
edge of the line must be to the robot’s left.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The only time we should see Light is when we’ve driven off the line to the left. If we need to get to
the left edge, it’s always a right turn to get back to line. Make the forward-right turn as long as
you’re seeing Light, and eventually, you’re back to seeing Dark!

Put those two behaviors in a loop, and you will see that the robot will bounce back and forth
between the light and dark areas. The robot will eventually bobble its way down the line.

Track the line:
The robot will perform the line track
behavior to the end of the line

Line Tracking Basic (cont.)

Swing turn right
Therefore, turn right toward the edge of the line.

Light Sensor sees light
The robot is now over the light surface. The left
edge of the line must be to the robot’s right.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

In this lesson you will learn how to use the light sensor to follow a line, using behaviors similar
to the Wait for Dark (and Wait for Light) behaviors you have already worked with.

1. Start with a new, clean program.

2. The first step is to configure the Light Sensor. Go to the Motors and Sensors Setup menu.
 Click “Robot” then choose the “Motors and Sensors Setup”.

1. Create new program
Select File > New to create a
blank new program.

2. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to
open the Motors and Sensors Setup menu.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

3. Configure an Active Light Sensor named “lightSensor” on Port1.

4. Press OK, and you will be prompted to save the changes you have just made. Press Yes to save.

5. Save this program as “LineTrack1”.

3b. Name the sensor
Name the Light Sensor on
port S1 “lightSensor”.

3c. Set Sensor Type
Identify the Sensor Type as a
“Light Active” sensor.

4. Select “Yes”
Save your program when prompted.

5a. Name the program
Give this program the name
“LineTrack1”.

5b. Save the program
Press Save to save the program
with the new name.

3a. Open A/D Sensors Tab
Click the A/D Sensors tab

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

6. Let’s start by putting the “easy” stuff in first: task main, parentheses, and curly braces.

Checkpoint
Your program should look like the one below. The Light Sensor is configured, and we can now
start with the rest of the code.

task main()
{

}

2
3
4
5
6

7. Recall that in order to seek the left edge of the line, the robot must go forward-left for as
long as it sees dark, until it reaches the light area. Similar to the Forward Until Dark behavior
you wrote earlier, this uses a while() loop that runs “while” the SensorValue of the
lightSensor is less than the threshold (which you must calculate as before).

2
3
4
5
6
7
8
9

10
11
12
13

task main()
{

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

}

7b. Add this code
Instead of moving forward like
Forward Until Dark, the robot
should turn forward-left.

Left motor stationary, with right
motor at 80% creates this motion.

7a. Add this code
This while() loop functions like
the Forward Until Dark behavior
you wrote earlier.

It will run the code inside the braces
as long as the SensorValue of
the lightSensor is less than the
threshold value of 45.

6. Add this code
These lines form the main body
of the program, as they do in
every ROBOTC program.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

8. The robot has presumably driven off the line, and must now turn back toward it. The robot
must turn forward-right as long is it continues to see the light table surface (i.e. until it sees the
dark line again).

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

}

8a. Add this code
This while() loop is very
similar to the one above it,
except that it will run the code
inside it while the light sensor
sees light, rather than dark.

8b. Add this code
This turns the robot forward-right by
running the left motor at 80% while
holding the right motor stationary.

Checkpoint
The code currently handles only one “bounce” off and back onto the line.
However, to track a line, the robot must repeat these two operations over and over again.
This will be accomplished using another while() loop, set to repeat forever. “Forever” will
be achieved in a somewhat creative way...

Discussing Concepts Using Pseudocode

Often when discussing programs and robot behaviors, it is useful for programmers
to use language that is a mixture of English and code. This hybrid language is
called “pseudocode” and allows programmers to discuss programming concepts in
a natural way. Pseudocode is not a formal language, and therefore there is no one
“right” way to do it, but it often involves simplifications to aid in discussion.

(continued on next page...)

Sensing

Line Tracking • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

9. Create a while() loop around your existing code. Position the curly braces so that both
of the other while loop behaviors are inside this new while loop. For this new while loop’s
condition, enter “1==1”, or “one is equal to one”.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

task main()
{

 while(1==1)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

}

9. Add this code
The new while() loop goes
around most of the existing
code, so that it will repeat
those behaviors over and over.

The loop will run as long as
“1==1”, or “one is equal
to one”. This is always true,
hence the loop will run forever.

Discussing Concepts Using Pseudocode (cont.)

The program on this page might
look like this in pseudocode:

repeat forever
{
 while(the light sensor sees dark)
 {
 turn forward-left;
 }
 while(the light sensor sees light)
 {
 turn forward-right;
 }
}

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

End of Section
Now that your program is complete, check to see if it works. Save your program, and then
download it to the robot and run. If you see that your robot is moving off the line in one direction,
it means that your threshold is set wrong. The robot thinks it’s seeing dark even on light, or light
even on dark, and it’s just waiting to see the other, which probably won’t happen if the values are
wrong. If, however, you see your robot bouncing back and forth, moving down the line, then your
robot is working correctly, and it’s time to move on to the next lesson.

Line Tracking Basic (cont.)

Sensing

Line Tracking • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In the previous lesson we learned the basics of how to use the light sensor to follow a line. That
version of the line tracker runs forever, and cannot be stopped except by manually stopping the
program. To be more useful, the robot should be able to start and stop the line tracking behavior
on cue. For example, the robot should be able to stop following a line when it reaches a wall at
the end of its path.

In principle, we should be able to do this pretty easily, all we need to do is change the “looping
forever” part to “loop while the touch sensor is unpressed.”

Line Tracking Better Lesson

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

1. Save your existing program from the previous lesson under a new name, “LineTrack2”.

3. You will be adding a second sensor for this lesson. Configure a Touch Sensor called
“touchSensor” on S2.

2. Open the Motors and Sensors Setup menu.

2. Open “Motors and Sensors
Setup”
Select Robot > Motors and Sensors
Setup to open the Motors and
Sensors Setup menu.

1a. Save program As...
Select File > Save As... to save your
program under a new name.

1b. Name the program
Give this program the name
“LineTrack2”.

1c. Save the program
Press Save to save the program
with the new name.

3b. Name the sensor
Name the Touch Sensor on
port S2 “touchSensor”.

3c. Set Sensor Type
Identify the Sensor Type as a
“Touch” sensor.

3a. Open A/D Sensors Tab
Click the A/D Sensors tab

In this lesson, you will adapt your line tracking program to stop when a Touch Sensor is
pressed, and then make it more robust by replacing risky nested loops with if-else statements.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

4. On your physical robot, plug the Touch Sensor into Port 2.

5. Press OK on the Motors and Sensors Setup menu.

5. Press OK
Accept the changes to the sensor
setup and close the window.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

7a. Block up the robot
Place an object under the robot
so that its wheels don’t reach
the table. The robot can now
run without moving.

Line Tracking Better (cont.)

6. Replace the “forever” condition 1==1 with the condition “the touch sensor is unpressed”,
the same condition you used to “run until pressed” in the Wall Detection (Touch) lesson.
This condition will be true when the SensorValue of touchSensor is equal to 0.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

6. Modify this code
Change the condition
in parentheses to check
whether the “touch sensor
is unpressed” instead.

The condition will be true
when the touch sensor’s
value is equal to 0.

7. Elevate (“block up”) the robot so that you can test it without its wheels touching the ground.
Note that the light sensor now hangs in the air. Download and run your program.

7b. Download the program
Click Robot > Compile and
Download Program.

7c. Run the program
Click “Start” on the onscreen
Program Debug window, or
use the NXT’s on-brick menus.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

Checkpoint
Check that your Line Tracking behavior is correctly responding to light and dark by placing light-
and dark-colored objects or paper under the light sensor.

Simulated light surface
Place a sheet of white paper under the sensor
to simulate the robot traveling off the line and
onto the light table surface. Watch for the
motors to change behaviors accordingly.

Simulated dark line
Using a dark-colored object (or the naturally low
value of the sensor when held in the air like this),
confirm that the robot exhibits the correct motor
behaviors when the sensor sees “dark”.

We modified the program so that the (condition) of the while() loop would only be true as long as
the Touch Sensor was unpressed. When the sensor is pressed, the loop should end, and move on.

Touch the Sensor
Press in the bumper
on the robot to trigger
the Touch Sensor.

Observe motors
Do the motors stop like
they should at the end
of the program?

Light/Dark again
Release the Touch
sensor, and see if the
robot still responds to
light and dark.

Light/Dark pressed
Hold down the Touch
Sensor bumper, and try
light/dark again. Does
anything happen?

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Line Tracking Better (cont.)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

Code must reach
this point
The Touch Sensor is
only checked when
the program reaches
this line.

The current program contains flawed logic. Until the robot stops seeing dark, there’s no
way for the program to reach the line that checks the touch sensor! This “stuck in the inner loop”
problem will always be a danger any time we place one loop inside another, a structure called a
“nested loop”. We were only able to get the robot to recognize touch by waving the light object in
front of it to force it out of the while(dark) loop, and back around to check the Touch Sensor again.

The robot responds strangely. When you pressed the touch sensor, it didn’t respond. But when you
held the touch sensor and waved the paper underneath it, the robot did stop. The touch sensor
seems to be doing its job of stopping the loop... sometimes? Let’s step through the code.

a. Touch Sensor check
The program checks the
condition only at this
point. It’s true when we
start, so the program
goes “inside” the loop.

b. Inner loop
As long as the robot
continues to see dark,
it enters and remains
in this loop.

What was the program was doing while the robot saw the dark object (or dark space below its
sensor)? The program reached and went inside the while(dark) loop, (b) above, and remained
inside as long as the Light Sensor continued seeing dark. Consider which lines check the Touch
Sensor. While the program was inside the inner while() loop, was it ever able to reach those lines?

Key concept: While() loops do not continually monitor their
(conditions). They only check when the program reaches the
“while” line containing the condition.

Code is stuck here
Until the Light Sensor
stops seeing dark,
the program doesn’t
leave this loop.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

In the same way that the while loop started with the word “while”, the if-else starts with the
word “if”. It, like the while loop, is followed immediately by a condition in parentheses. In fact, it
uses the same condition as the old program to check the light sensor. The difference is that the
if-else statement will only run the commands in the brackets once, regardless of the light or touch
sensor readings.

If the SensorValue of the lightSensor is less than the threshold, then the code directly after will
execute, once. The else, followed by another set of curly braces, represents what the program
should do if the condition is not true.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

7a. Modify this code
Replace while with if.

If the light sensor value is
less than 45, run the code
between the curly braces,
once only, then move on.

The solution requires a little shift in thinking. The program as it is now involves running trough an
“inner” while loop, where it has the potential to get stuck, oblivious to the outside world. We need
to get rid of the nested loop. If, instead, we break down the robot’s actions into a series of tiny,
instantaneous decisions that will always pick the correct direction, we can avoid the need to go
“inside” a loop that might not end in time. Enter the if-else statement.

	 	 if(condition)
	 	 {
	 	 	 true-commands;
	 	 }
	 	 else
	 	 {
	 	 	 false-commands;
	 	 }

General form

Conditional (if-else) loops always follow the pattern shown here.

If the (condition) is true, the true-commands will run.
If the (condition) is false, the false-commands will run instead.

Note, however, that whichever set of commands is chosen, they
are only run once, and not looped!

7b. Modify this code
Replace the while() line with
the keyword else.

If the code in the if statement’s
brackets did not run, the code in
the else statement’s brackets
will instead (once). This should
only happen when the light
sensor is seeing a value >= 45
(i.e .light).

7. Replace the inner while() loops with a simpler, lightweight decision-making structure called
a conditional statement, or if-else statement.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

End of Section
Save your program, download, and run.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

8. Add this code
Stop both motors. Because these
lines come outside the while()
loop, they will run after the
while() loop has completed.

The robot no longer gets stuck in the “inner” while() loop, and successfully tracks the line until the
touch sensor is triggered.

8. As a final touch, add a Stop motors behavior into the program, right before the final bracket.
This ensures that you’ll see an immediate reaction when the robot gets out of the loop.

Sensing

Line Tracking • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The behavior we programmed in the previous lesson is great for those situations where you want
the robot to follow a line straight into a wall, and stop. However, let’s see if there are any good
ways to make the robot line track until something else happens.

To make the robot go straight for 3 seconds, we gave it motor commands, followed by a
wait1Msec(time)command. How would this work with line tracking?

Line Tracking Timer Lesson

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 wait1Msec(3000);

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

Location C
How about here like this?

Location D
Or here?

Location B
Here?

Location A
Does the wait1Msec
command go here?

Option E
Both B and D together.

Which one of the above locations is the right place to put the wait1Msec command?

The correct answer is: none. There is no right place to put a wait1Msec command to get the
robot to line track for 3 seconds. Wait1Msec does not mean “continue the last behavior for this
many milliseconds,”it means, “go to sleep for this many milliseconds.”

You’ve really told the robot to put its foot on the gas pedal, and go to sleep. That doesn’t work
when the robot needs to watch the road. Instead, we’ll keep the robot awake and attentive, using
a Timer (rather than just Time) to decide when to stop.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

Your robot is equipped with four Timers, T1 through T4, which you can think of as Time Sensors,
or if you prefer, programmable stopwatches.

Using the Timers is pretty straightforward: you reset a timer with the ClearTimer() command,
and it immediately starts counting time.

Then, when you want to find out how long it’s been since then, you just use time1[TimerName],
and it will give you the value of the timer, in the same way that SensorValue(SensorName)
gives you the value of a sensor.

	 	 ClearTimer(TimerName);

	 	 while(time1[TimerName]	<	5000)	

Timer Tips

Timers should be reset when you are ready to start counting.

time1[TimerName] represents the timer value in milliseconds
since the last reset. It is shown here being used to make a while
loop run until 5 seconds have elapsed.

Sensing

Line Tracking • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

1. Open the Touch Sensor Line Tracking program “LineTrack2”.

2. Save this program under a new name, “LineTrackTimer”. (Note the “r” at the end of “timer”)

2a. Save program As...
Select File > Save As... to save your
program under a new name.

2b. Name the program
Give this program the name
“LineTrackTimer”.

2c. Save the program
Press Save to save the program
with the new name.

1a. Open Program
Select File > Open and Compile to
retrieve your old program.

1b. Select the program
Select “LineTrack2”.

1c. Open the program
Press Open to open the saved
program.

In this lesson you will learn how to use Timers to make a line-tracking behavior run for a set
amount of time.

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

Checkpoint
The program on your screen should again look like the one below.

3. Before a timer can be used, it has to be cleared, otherwise it may have an unwanted
time value still stored in it.

2
3
4
5
6
7
8
9

10

3. Add this code
Reset the Timer T1 to 0 and
start it counting just before
the loop begins.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

 ClearTimer(T1);

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

4. Now, change the while loop’s (condition) to check the timer instead of the touch sensor.
The robot should line track while the timer T1 reads less than 3000 milliseconds.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

End of Section
Download and Run.

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

4. Modify this line
Base the decision about whether
to continue running, on how
much time has passed since T1’s
last reset.

ROBOTC gives you four different timers to work with: T1, T2, T3, and T4. They can be reset and
run independently, in case you need to time more than one thing. You reset them the same way
– ClearTimer(T2); – and you check them the same way – time1[T2].

Still, there’s the issue of timing itself. Motors, even good ones, aren’t perfectly precise. By
assuming that you’re going a certain speed, and therefore will go a certain distance in a set
amount of time, you are making a pretty bold assumption.

In the next part of this lesson, you’ll find out how to track a line for a certain distance, instead of
tracking for time and hoping that it equates to the correct distance.

Line Tracking for Time(r)
The robot tracks the line for a set
amount of time. But is time really
what you want to measure?

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson we’ll find out how to watch for distance, instead of watching for time and hoping that
the robot moves the correct distance, like in our previous program.

Line Tracking Rotation

A rotation sensor is a patterned disc attached to the inside of the motor. By monitoring the
orientation of the disc as it turns, the sensor can tell you how far the motor has turned, in
degrees. Since the motor turns the axle, and the axle turns the wheel, the rotation sensor can tell
you how much the wheel has turned. Knowing how far the wheel has turned can tell you how far
the robot has traveled. Setting the robot to move until the rotation sensor count reaches a certain
point allows you to accurately program the robot to travel a set distance.

NXT Motors
Rotation sensors are built into
every NXT motor.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Review
The last program we’re going to visit in the Line Tracking lesson is perhaps the most useful
form, but it’s taken us awhile to get here. Progress in engineering and programming projects is
often made in this “iterative” way, by making small, directed improvements that build upon one
another. Let’s quickly review what we have done in some of the previous lessons.

We started with figuring out that a line tracking behavior consists of bouncing back and forth
between light and dark areas in an effort to follow the edge of a line.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

We then implemented a naive version of the line tracking behavior using while() loops, inside
other while() loops.

But, we found that the program could get stuck inside one of those inner loops, preventing it from
checking the sensor that we wanted to use to stop the tracking.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

task main()
{

 while(1 == 1)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

}

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Then, we upgraded from checking a Touch Sensor, to being able to use an independent timer to
determine how long to run the line tracker.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

We then implemented if-else conditional statements, which allow instantaneous sensor checking,
and thus avoid the “nesting” of loops inside other loops, which had caused the program to get stuck.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

1. Start by opening the Line Tracking Timer Program “LineTrackTimer”.

2. Save this program under a new name, “LineTrackRotation”.

2a. Save program As...
Select File > Save As... to save your
program under a new name.

2b. Name the program
Give this program the name
“LineTrackRotation”.

2c. Save the program
Press Save to save the program
with the new name.

1b. Select the program
Select “LineTrackTimer”.

1c. Open the program
Press Open to open the saved
program.

Now, let’s improve upon the Timer-based behavior by using a sensor more fundamentally
connected to the quantity we wish to measure: distance traveled, using the Rotation Sensor.

In this lesson you will learn how to use the Rotation Sensors built into every NXT motor to
make a line tracking behavior run for a set distance.

1a. Open Program
Select File > Open and Compile to
retrieve your old program.

Sensing

Line Tracking • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Checkpoint
Your starting program for this lesson should look like the one below.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

It’s time to start changing the program to use the Rotation sensors. Rotation sensors have
no guaranteed starting position, so, you must first reset the rotation sensor count. It will take
the place of the equivalent reset code used for the Timer.

In the robotics world, the term “encoder” is often used to refer to any device that measures
rotation of an axle or shaft, such as the one that spins in your motor. Consequently, the ROBOTC
word that is used to access a Rotation Sensor value is nMotorEncoder[MotorName].

Unlike the Timer, which has its own ClearTimer command, the rotation sensor (motor encoder)
value must be manually set back to zero to reset it. The command to do so will look like this:

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

Example:

nMotorEncoder[motorC] = 0;

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

3. Start with the left wheel, attached to Motor C on your robot. Reset the rotation sensor on
that motor to 0.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

task main()
{

 nMotorEncoder[motorC] = 0;

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

3. Modify this code
Instead of resetting a Timer,
reset the rotation sensor in
MotorC to a value of 0. Replace
ClearTimer(T1); with
nMotorEncoder[motorC]=0;

Sensing

Line Tracking • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

4. Reset the other motor’s rotation sensor, nMotorEncoder[motorB] = 0;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

4. Add this code
Reset the rotation sensor in
MotorB to 0 as well.

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

5. The NXT motor encoder measures in degrees, so it will count 360 for every full rotation
the motor makes. Change the while() loop’s condition to make this loop run while the
nMotorEncoder value of motorC is less than 1800 degrees, five full rotations.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(nMotorEncoder[motorC] < 1800)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

5. Modify this code
Set MotorC to run for five full
rotations or 1800 degrees.

Checkpoint
Save, download and run your program. You may want to mark one of the wheels
with a piece of tape so that you can count the rotations.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

6. We only checked one wheel and not the other. Add a check for the other motor’s encoder
value to the condition. The {condition} will now be satisfied and loop as long as BOTH motors
remain below the distance threshold of 1800 degrees.

2

3

4

5

6

7

8

9

10

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(nMotorEncoder[motorC] < 1800 && nMotorEncoder[motorB] < 1800)
 {

End of Section
Download and run this program, and you will see that on curves going to the left, where the right
motor caps out at 1800 first, this program will stop sooner than the one that just waited for the
left motor (remember, the left motor is traveling less when making a left turn).

Take a step back, and look at what you have. Your robot is now able to perform a behavior
using one sensor, while watching another sensor to know when to stop. Using the rotation sensor
means that your robot can now travel for a set distance along the line, and be pretty sure of how
far it’s gone. These capabilities can be applied to more than just line tracking, however. You can
now build any number of environmentally-aware decision-making behaviors, and run them until
you have a good reason to stop. This pattern of while and conditional loops is one of the most
frequently used setups in robot programming. Learn it well, and you will be well prepared for
many roads ahead.

6. Add this code
This change sets the condition
to run while “the motor encoder
on motorC reads less than 1800
degrees, AND the motor encoder
for motorB also reads less than
1800 degrees.

ROBOTC

Line Tracking Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Quiz

2. List two ways in which the “Line Tracking (Rotation)” program improves upon the
 “Line Tracking (Basic)” program. Explain why they are actually improvements.

1. Why can nested loops cause a problem in a program?

if(SensorValue(lightSensor) > 45)
{
 motor[motorC] = 75;
}
else
{
 motor[motorB] = -75;
}

1
2
3
4
5
6
7
8

3. Answer the questions about the following segment of code:

 a. What will the robot do if the light sensor reads a value of 64?

 a. What if it reads a value of 45?

Sensing

NAME DATE

ROBOTC

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The Sound Sensor is the last of the standard NXT sensors. In essence it’s a kind of microphone
which senses amplitude (how loud or soft a sound is), but not anything else about it. The Sound
Sensor, like the Light Sensor, reports values from 0-100 which do not correspond to any specific
standard scale.

Speed Based on Volume Values & Assignment (Part 1)

Sound Sensor
The Sound Sensor has an
orange foam pad which
resembles a microphone

Sensing

ROBOTC

Sensing

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed Based on Volume Values and Assignment (Part 1) (cont.)

In this lesson you will learn how to use the Sound Sensor to manipulate your robot’s motors

1. Start by opening a new program.

2. Open the Motors and Sensors Setup menu to configure the Sound Sensor.

1. Create new program
Select File > New to create a
blank new program.

2. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to
open the Motors and Sensors Setup menu.

ROBOTC

Sensing

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

3. Configure the sensor on port 1 to be a “SoundDB” sensor named “soundSensor”.

4. You will be prompted to save the changes you have just made. Press Yes to save.

5. Save this program as “SoundValue”.

3a. Name the sensor
Name the Sound Sensor on
port S1 “soundSensor”.

3b. Set Sensor Type
Identify the Sensor Type as a
“Sound DB” sensor.

4. Select “Yes”
Save your program when prompted.

5a. Name the program
Give this program the name
“SoundValue”.

5b. Save the program
Press Save to save the program
with the new name.

Speed Based on Volume Values and Assignment (Part 1) (cont.)

3c. Click OK
Click the “OK” button to
save your changes.

ROBOTC

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing

The Sound Sensor is now configured. Now, start the program by creating a task main() structure,
then add a forward movement command for 10 seconds with both motors at 50% power.

task main()
{
 motor[motorC] = 50;
 motor[motorB] = 50;
 wait1Msec(10000);
}

1
2
3
4
5
6

Checkpoint
Let’s analyze what we’re telling the robot to do. The basic motor command sets a given
motor’s power level. In this case, you’re setting Motor C and B’s power level to 50. 50 is
just a number. If you wanted to set the power to 25, you would put 25 here. 100 works
too. Really, any number value will do....

The Sound Sensor reading is also a number value. If the Sound Sensor is reading a
sound level of 40, SensorValue(soundSensor) is the number value 40! We could simply
put SensorValue(soundSensor) in place of the number we’ve been using, and the
motor power would be set to the Sound Sensor’s value! Let’s try it.

Speed Based on Volume Values and Assignment (Part 1) (cont.)

25100

SensorValue(soundSensor)

ROBOTC

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing

6. Motor powers are number values. You can replace any number value with another, like
changing a 50 to 75 or 100. SensorValue(soundSensor) is also a number. Replace 50
with the sensor value.

6. Modify the code
Replace the number values of
50,to the value of the Sound
Sensor, S1.

task main()
{
 motor[motorC] = SensorValue(soundSensor);
 motor[motorB] = SensorValue(soundSensor);
 wait1Msec(10000);
}

1
2
3
4
5
6

Checkpoint. In theory, our program should now work like this:
• The Sound Sensor reads the amount of sound in the environment
• The Sound Sensor sets the motor power to be equal to the sensor’s numeric value
• The robot should run at a speed determined by the Sound Sensor reading – fast for loud,
 and slow for quiet

Speed Based on Volume Values and Assignment (Part 1) (cont.)

ROBOTC

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing 1

7. Save, download, and run your program. Clap your hands to change the sound sensor value.

End of Section
The robot’s reaction to the level of sound in the environment was pretty disappointing
– nothing happened. In the next section, we’ll take a look at what’s going on, where our
understanding went wrong, and how the problem can be fixed.

7a. Make some noise!
Run the program then clap your hands to
change the sound sensor value.

7b. Observe the (lack of) reaction
The robot doesn’t seem to do anything different...

Speed Based on Volume Values and Assignment (Part 1) (cont.)

ROBOTC

Volume & Speed • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing

Try running the robot again, but make the sound just as you press the Start button.

The robot is clearly responding to sound levels, but not at the right time. Remember the line
tracking behavior? The wait1Msec command tells the robot to go to sleep for a period of time.
Going to sleep means the robot isn’t watching the sound sensor or updating motor values!
If we want to keep the motor’s power level up to date with the sensor, we will need to make
sure that the power level command gets run over and over. We’ll need to use a while loop
and a Timer.

Clap and Run
This time, clap (or talk into the Sound Sensor)
just as you press the Start buton.

Observe the behavior
The robot moves much faster.

Speed Based on Volume Values & Assignment (Part 2)

In this lesson you will make the robot’s motors use the Sound Sensor’s values in real-time.

ROBOTC

Volume & Speed • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing

1. Delete the wait statement, and add a while() loop around the motor behaviors.

task main()
{
 while()
 {
 motor[motorC] = SensorValue(soundSensor);
 motor[motorB] = SensorValue(soundSensor);
 wait1Msec(10000);
 }
}

1
2
3
4
5
6
7
8
9

1b. Delete this line
We don’t want the robot “sleeping”
when it needs to update motor powers.

2. Timers must first be initialized, so add a ClearTimer(T1) just before the loop. Check the timer
 in our while loop condition, we use timer1[T1] less than 10,000 milliseconds, or 10 seconds.

task main()
{
 ClearTimer(T1);
 while(time1[T1] < 10000)
 {
 motor[motorC] = SensorValue(soundSensor);
 motor[motorB] = SensorValue(soundSensor);
 }
}

1
2
3
4
5
6
7
8
9

2a. Add this code
Timers must be reset before use.

2b. Add this code
The (condition) will now check whether
the timer, T1, is less than 10000ms
(10 seconds). The loop’s {body} will
run while this is true, i.e. less than 10
seconds have passed since the reset.

Speed Based on Volume Values and Assignment (Part 2) (cont.)

1a. Add this code
Place the while loop
so that the motor
commands go inside
its curly braces.

The (condition) is not
yet specified.

ROBOTC

Volume & Speed • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Sensing

3. Save, download, and run your program.

End of Section
The robot is now checking the sensor repeatedly, and updating the motor power with the new
sensor values as quickly as it can, over and over again. As a result, the robot is now responsive to
new sound levels in the environment. Rather than just on or off, loud or soft, we’ve programmed
the robot to change the motor power level in direct proportion to the sound level. This is a
powerful way to use sensor values. It takes advantage of their numeric nature to link a sensor
value with another numeric value, motor power output.

In the next Unit’s challenges, you’ll have additional opportunities to look even more deeply into
the nature of numbers and other data types in ROBOTC. For the immediate future, we think you’ll
find this Volume Based on Speed behavior helpful on the Obstacle Course. See you on the field!

Run the program
Run the program and clap your hands
repeatedly.

Observe the behavior
The robot moves depending on how much
noise it detects!

Speed Based on Volume Values and Assignment (Part 2) (cont.)

ROBOTC

Volume & Speed Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Volume & Speed Quiz

const tSensors soundSensor = (tSensors) S1;

task main()
{
 motor[motorC] = SensorValue(soundSensor);
 motor[motorB] = SensorValue(soundSensor);
 wait1Msec(10000);
}

1
2
3
4
5
6
7
8

1. The program below makes the robot:

 a. travel at a speed that varies continually based on the value of the sound sensor, for 1 second.
 b. travel at a set speed based of the initial value of the sound sensor, for ten seconds.
 c. travel at a speed that varies continually based on the value of the sound sensor, for 10 seconds.
 d. travel at a set speed based of the initial value of the sound sensor, for one second.

2. Explain, in terms of “values”, why the amount of sound you made affected how quickly
 the robot moved in the Speed Based on Volume program.

Sensing

NAME DATE

ROBOTC

Warehouse Challenge© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Materials Needed

Warehouse Challenge

• Black electrical tape
• Red electrical tape
• Scissors (or cutting tool)

7’ 9”

3’ 9”

Note: Diagrams are not drawn to scale

Challenge Description
This challenge provides the lines needed in order to investigate line counting, as well as many
other behaviors. Books and the LEGO Box are used as obstacles, and lines are use for “markers”.

Board Specifications

1

1

2

• Ruler (or straight edge)
• 3 Books
• 1 LEGO Box container

Starting area.

Goal area.

Variables and Functions

LEGO
Box

2

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables

In the previous lesson, “Speed Based on Volume”, the robot set its motor power levels based on
sound sensor readings. To the robot, this was no different than setting the power level to 25, 50,
or 100. These numbers – 25, 50, 100, Sound Sensor readings – are all interchangeable values
that could be used to set the motor power levels.

There are some situations where values need to be stored for later use. For example, a robot sent
into a cave to gather Light Sensor values needs to both record those values inside the cave and
be able to recall them afterwards.

Without some way to store these values, they will be lost by the time the robot leaves the cave.
Variables are the robot’s way of storing values for later use. They function as containers or
storage for values. Values such as the cave robot’s sensor reading can be placed in a variable
when calculated (inside the cave), and retrieved at a later time (outside the cave) for convenient
use. A variable is simply a place to store a value.

There are, however, different types of values. For instance, there are different types of numbers
(integers versus decimals, to name just two), and there are values that aren’t even numbers, like
words. Since there are different types of values, there are different types of variables to hold
them. In order to create (or “declare”) a variable, the programmer must identify two key pieces of
information: the type of value it will hold, and a name for the variable.

In this lesson, we’re going to look a little deeper into the world of “values,” and pay special
attention to the programming structures that are used to represent and store values, which
are called “variables.”

Robot enters the cave
The robot enters the cave (dark area
on the right) to gather data.

Robot takes sensor readings
The robot must take and store
sensor readings inside.

Robot returns
The robot backs out of the cave and
displays the values from inside.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables (cont.)

Other kinds of values also exist, including text like “Hello”, and logical values like True.

Floating point (“float”) numbers are so called because the decimal point “floats” around
in the value, allowing decimal places to be used. Floating point numbers can be positive,
negative, or zero, but they may also represent decimals. Floating point numbers take
up more memory on the robot, and are slower to calculate with, so integer values are
preferred when decimals aren’t necessary.

Integers Non-Integers

3.1456, 31.456, 0.0, -314.56
Floating Point Numbers

10, 0, -10 10.5 10.0

Number values in ROBOTC are broken down into two different kinds of numbers:

Integer, or “int” values are numbers with no fractional or decimal component.

Strings (“string”): Text in ROBOTC is always a “string”. In ROBOTC, the word “Hello” is
really a collection of letters – ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ – “strung” together to form a single value.
In fact, while all words are strings in ROBOTC, all strings are not words, and do not even
have to be collections of letters. A string may be a series of numbers, or a series of mixed
numbers and letters.

“Hello”, “my name is”, “a16Z”
Strings

true, false
Boolean Values

Boolean (“bool”) values represent “truth” or “logic” values, in the form of “true” or “false”.

The names of variables can include anything that follows the general ROBOTC naming rules
(see the “Wall Detection (Touch)” lesson for a list of rules). For types, ROBOTC breaks values
down into a few simple categories.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables (cont.)

End of Section
Things like motor powers and sensor readings are values. Values can be of different types, like
integers or strings. When you need to store them, you can use a variable of the appropriate type
to hold the value for later use. Variables must be declared by assigning them a suitable type
and a name. Names must follow the usual ROBOTC naming rules, and should be chosen so
that you will be able to remember what each variable is supposed to be doing when you read or
troubleshoot your code later.

To declare a variable, simply call out its type, then its name, then end with a semicolon.

int lightValue; will create a new integer-type variable named lightValue.

bool isAwake; will create a new true-or-false (Boolean) variable named isAwake.

Data Type Description Example Code

Integer
Positive and negative whole
numbers, as well as zero.

-35, -1, 0,
33, 100, 345

int

Floating Point
Decimal

Numeric values with decimal
points.

-.123, 0.56,
3.0, 1000.07

float

String
A string of characters that can
include numbers, letters, or typed
symbols.

“Counter
reached 4”,

“STOP”,
“time to eat!”

string

Boolean
True or False. Useful for express-
ing the outcomes of comparisons.

true, false bool

Optionally, you can also assign a value to the variable at this point, but it is not necessary.

int lightValue = 0; will create a new integer-type variable named lightValue,
with a starting value of 0.

bool isAwake = true; will create a new true-or-false (Boolean) variable named
isAwake, with a starting value of true.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and Threshold

When the program begins, the user will be prompted to “scan” a light surface with the Light
Sensor, and then “scan” a dark surface. The robot will then calculate its own Light Sensor
threshold, wait a few seconds, and proceed as normal.

We’ll begin by going through the threshold calculation process manually, and taking note of the
important values that the robot will have to keep track of. Every time a number or value has to be
remembered, make a note.

In this lesson, we will give the robot the ability to configure itself at the beginning of
every run, with only a little human assistance.

Having to reprogram the robot every time the lighting conditions change is not efficient.

Scanning light
The robot’s light sensor is first positioned over a
light surface and told to read and store its value

Scanning dark
Then, the robot’s light sensor is positioned over a
dark surface and told to read and store its value

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and Threshold (cont.)

1. Turn on your NXT and navigate to the “View” mode using the gray arrows.

1a. Push the orange button
Turn on the robot by pushing
the orange button. The screen
should display “My Files” when
it is on.

2. Record your Light and Dark readings. Record these values.

1b. Go to the “View” menu
Navigate to the “View” menu
using the arrow buttons. Press
the orange button to go into it.

1c. Select “Reflected Light”
Select “Reflected Light”, not
“Ambient Light”. You will get
different values otherwise.

1d. Select your port number
Select the port number that your
Light sensor is plugged into.

2a. Record the light value
Place the robot on the light
surface, and record the value
that the Light sensor is reading.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

5. Find the average of the light and dark readings by adding them together and dividing by two.
This thresholdValue will be used for future comparison.

light value + dark value = sum

66 + 33 = 995a.

5b. 99 / 2 = 49.5

sum / 2 = average

5c.
Note: Get rid of the decimal number

 49.5 = 49

Automatic Threshold Variables and Threshold (cont.)

2b. Record the dark value
Place the robot on the dark
surface, and record the value
that the Light sensor is reading.

Get rid of the decimal
ROBOTC will get
rid of the decimal
automatically when
using integers.

5d.
average = threshold

49 = thresholdValue

ROBOTC

Automatic Threshold • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In order to write a program that will auto-calculate the value of threshold, we will need to create
four variables to store the four values that the calculation needs. To declare each variable, a
name and type must be specified. The name should help you to remember what the variable
does. For this lesson these values will be named:

• lightValue
• darkValue
• sumValue
• thresholdValue

Automatic Threshold Variables and Threshold (cont.)

Checkpoint
Four values were either recorded or calculated: light value, dark value, sum, and threshold.

light value + dark value = sum

 66 + 33 = 99
Calculate “sum” value
The sum value is found by adding the
light value and dark value.

99 / 2 ≈ 49

sum / 2 = threshold
Calculate average/”threshold” value
The average is found by dividing the sum
value by 2. The resulting average is the
threshold value.

In addition to a name, the type of value (integer, floating point decimal, string, boolean value)
that each variable will hold needs to be determined.

Light Sensors yield values that are whole numbers. So lightValue and darkValue will be “declared”
as integers. Since the sum of two integers is also an integer, sumValue will be declared as an
integer as well. Dividing by two might result in a decimal, but since the threshold is an estimate to
begin with, rounding won’t hurt it, and so thresholdValue will also be declared as an integer.

Declaring Variables

To create a variable, you must “declare” it with two pieces of information:

datatype then name;

Example:
int lightValue; will create a new integer-type variable named lightValue.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

7. Place the four variables declared as integers in a new program.

Automatic Threshold Variables and Threshold (cont.)

7a. Create new program
Select File > New to create a
blank new program.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

}

2
3
4
5
6
7
8
9
10

7c. Add these lines
Declare the four variables,
lightValue, darkValue, sumValue
and thresholdValue as integers.
Remember that typographic
errors can keep the program
from functioning!

End of Section
Four variables have been created to store the four values needed to calculate a Light Sensor
threshold. In the next lesson we will write the remainder of the program.

task main()
{

}

2
3
4
5
6
7
8
9

10

7b. Add this code
These lines form the main body
of the program, as they do in
every ROBOTC program. Leave
four lines between curly brackets
for the variables.

ROBOTC

Automatic Threshold • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables

The robot will take the first Light Sensor reading over a light surface when the Touch Sensor is
pressed, then take a second reading over a dark surface when the Touch Sensor is pressed a
second time.

In this lesson, you will learn how to store Light Sensor values in the variables you created, and
how to use a Touch Sensor as a user interface button.

1. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to
open the Motors and Sensors Setup menu and
configure the sensors.

1. Open the Motors and Sensors Setup menu.

First, we’ll configure the Light and Touch Sensors.

Light Sensor

Touch Sensor

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

}

2
3
4
5
6
7
8
9
10

Existing program
Your program should
currently look like this.

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

3. Select the A/D Sensors tab, and make Port 1 the Touch Sensor, named touchSensor,
and Port 2 the Light Sensor, named lightSensor.

3a. Select “A/D Sensors” tab
Selecting this tab allows you view your
sensors set up menu.

3c. Name the sensor
Name the Touch Sensor on
port S1 “touchSensor”.

3b. Set sensor type
Identify the Sensor Type as a
“Touch” sensor.

2. ROBOTC will ask if you want to save your program. Click Yes, then save the program
as “Autothreshold”.

2a. Select “Yes”
Save your program
when prompted.

2b. Name the program
Name the program
“Autothreshold”.

2c. Save the program
Press Save to save the
program with the new
name.

3e. Name the sensor
Name the Light Sensor on port
S2 “lightSensor”.

3d. Set sensor type
Identify the Sensor Type as a
“Light Active” sensor.

3f. Click OK

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

The next step is for the robot to take the first Light Sensor reading over a “light” surface when the
Touch Sensor is pressed. Then, take the dark reading on the next Touch Sensor press.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

4. The robot should wait for the Touch Sensor to be pressed. A while() loop is used to check the
touchSensor value to watch for a press. As long as the Touch Sensor isn’t pressed,

 (SensorValue(touchSensor)==0) remains true, and the robot does nothing.

5. After the Touch Sensor is pressed, record the Light Sensor’s value to the variable
lightValue. Assign the value of the sensor to the variable. LightSensor =
SensorValue(lightSensor) Note: A single equals sign means, “set to the value of”.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14

4. Add this code
This while() loop idles
(i.e. runs an empty {} code
block) while the Touch
Sensor is not pressed.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

5. Add this code
This line puts the Light Sensor’s value
into the variable lightValue.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

6. Next, the robot records the dark value. Either retype the wait-for-press loop, and the storing
of the value manually, or just highlight and copy the code you just wrote, (starting with “while”
and ending with the semicolon) and paste another copy of it below. In this second recording,
of course, you want to record the value to the dark Value.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

6b. Add this code
This line puts the Light Sensor’s value
into the variable “darkValue”.

Checkpoint
Check to see if the program is working. It is almost always better to write code in small bits
and test often, rather than waiting to test a long section of code in which many mistakes could
be hiding.

7. Compile, Download and run your program.

7. Compile and Download
Robot > Compile and
Download Program

6a. Add this code
This while() loop idles while the
Touch Sensor is not pressed, just
like the previous one.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

8. Run the program. Put the Light Sensor over a light surface. Press the Touch Sensor.
Keep an eye the robot... it may not do what you expect!

End of Section
Something is wrong with the program. In the next lesson, the debugger will be used
to fix the problem.

9. The program seems to end immediately when the Touch Sensor is pressed.
That’s not what we wanted!

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger

In this lesson, the Debugger windows will be used to determine why the program is not
running properly. The debugger can be used to “freeze time” for the robot and allows you to
step through the program at whatever speed you want.

1. Something is obviously wrong with the program. Download the program again, but this time,
make sure the robot stays plugged into the computer, and watch the code window.

1a. Plug the robot back in
Robot has to be plugged into the
computer, via USB, to be able to
view the code window.

1b. Compile and download
Select Robot > Compile and
Download Program. The option
may just read “Download
Program”, which is fine also.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

2. After you have downloaded the program to your robot, fix the problem by open up the
Debugger, then select both the Global Variables and the NXT Devices options so both these
windows are visible.

2a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

2b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT devices if they are not
already checked.

Checkpoint
The screen should look like the sample below with three windows visible: Program Debug,
Global Variable and NXT Device Control Display.

ROBOTC

Automatic Threshold • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

3. Run the program. Observe what happens when you push the Touch Sensor.

3. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Checkpoint
The button was pressed once, and the program shot straight to the end. You can tell the program
is finished because the Start button on the Program Debug window is highlighted. (If the program
was still running, the Suspend button would be highlighted.)

4. Run the program again, but this time use the Program Debug window to “freeze” time and
step through the program while suspended. To do so, press the Suspend button, then the
Step button.

4b. Press Suspend button
Press the Suspend button on the
Program Debug window to “stop” time
and leave the program right where it is.

4c. Press Step button
Press the Step button to go to the
next line of code.

4a. Press Start button
Press the Start button to get the
program started.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

5. Press the Touch Sensor and observe in the NXT Device Control Display that it is pushed and
working properly.

5b. Observe the Touch Sensor
The value of the Touch Sensor, 1,
means that it is pressed.

5a. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Since you have suspended the program, the robot’s program remains “frozen” at the first while()
loop (where the yellow line appears in the code). The NXT Device Control window on your PC
screen, however, remains operational, and will cantinue to report the value of the sensors.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Line about to run
The program will run this
step when the Step button is
pressed again.

Because the line is a while
loop, it will evaluate the
(condition) and decide
whether to loop, or move on.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

6. While continuing to hold the Touch Sensor in the pushed position, click the Step button on the
Program Debug control panel to allow the program to move past the while() loop.

6a. Push the Touch Sensor
Hold the Touch Sensor in the
pushed position while pressing the
Step button.

6b. Press Step button
Press the Step button while pushing
the Touch Sensor to allow you to go
to the next step of the code.

Since the Touch Sensor value is not 0 at the time the while loop checks, the program moves
past the loop to the next step. The next line turns yellow now to indicate that this command is
about to be executed.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Line about to run
The program will run this
line when the Step button is
pressed again.

Line that was run
When you pressed Step, this line
was run. The (condition) was
False because the touchSensor
value was 1 (and not 0), so the
program exited the loop and
moved on.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

7. Find the variable lightValue in the Global Variables window. Push the Touch Sensor. Keep it
pushed in while pressing the Step button. The Light Sensor’s value when the Step button was
first pressed is now stored in the variable lightValue.

7b. Press Step button
Press the Step button while pushing
the Touch Sensor to enable the
program to move to the next line
of code.

7c. Stored Variable
The lightValue variable now
equals the value of the Light
Sensor when the Touch Sensor
was first pushed, as shown in the
Global Variables window.

7a. Push the Touch Sensor
Hold the Touch Sensor in the pushed
position while pressing the
Step button.

13
14
15
16
17
18
19
20
21
22

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

Line about to run
The program is now ready to
run this next step when Step is
pressed again.

Because the line is a while loop,
it will evaluate the (condition)
and decide whether to loop, or
move on.

Line that was run
When you pressed Step, this line
was run, and stored the value of
the Light Sensor in the variable.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

8. While continuing to hold the Touch Sensor in, press the Step button several times to step
through the rest of the program.

8b. Press Step button
Press the Step button several times
while pushing the Touch Sensor
to step through to the end of the
program.

8a. Keep the Touch Sensor pressed
Hold the Touch Sensor in the pushed
position while pressing the Step button.

13
14
15
16
17
18
19
20
21
22

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

} 8d. Press Step button again
The program moves to the next
line of code, the last curly bracket,
and the program ends.

13
14
15
16
17
18
19
20
21
22

8c. Press Step button again
The program moves to the next
line of code, making the variable
darkValue equal to the Light
Sensor value the moment the
Touch sensor was pressed.

Line that was run
When you pressed Step, this line
was run. The (condition) was
False because the touchSensor
value was 1 (and not 0), so the
program exited the loop and
moved on.

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

9. Place a command between the while() loops telling the robot to wait for 1 second before
looking for the Touch Sensor value again. This allows the human operator enough time to
push, and release, the Touch Sensor.

Checkpoint
Do you see what the problem is? When the Touch Sensor is held down, the program shoots
straight through to the end of the program without stopping.

Why does it do this? Because we told it to. When the Touch Sensor was pressed, it took the
program out of the first while loop. This was what we intended. But then, it quickly set the
lightSensor variable, and then waited for the button to be pressed... which it still was, from the
first press! The program immediately jumped past the second while loop. This is what we said,
though certainly not what we wanted!

With the Step function, you could see this happening one step at a time. At normal speed, all this
happens before you can take your finger off the button from the first press!

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

End of Section
In this lesson, the debugger was used as a tool to diagnose why a program was not working
properly. Stepping through the commands in a program one at a time allows you to slow down
the program so the problem can be found.

9. Add this code
Tells the robot to wait for 1
second before it starts looking
for the Touch Sensor again.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations

Checkpoint
This is what the current program should look like.

About half of the autothreshold calculator program is complete. In the previous lessons the
Light and Dark values were recorded and stored in variables. In this lesson, you will use them
to calculate the threshold value for the robot’s environment.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations (cont.)

1. Starting at the end of the program, just before the closing brace of the task main pair, set the
sumValue equal to the sum of lightValue and darkValue. The variable sumValue is now being
used to store the result of lightValue plus darkValue.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;

}

1. Add this code
Add lightValue and darkValue
together, and store the result in
the variable sumValue.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

2. Set thresholdValue equal to sumValue divided by two. The variable thresholdValue now stores
the threshold value calculated from the readings of light and dark surfaces.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

2. Add this line of code
Divide sumValue by 2, and
store the result in the variable
thresholdValue.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

4. Compile and download your program.

5. Step through the program using the debugger, pushing the Touch Sensor at the appropriate
times. Observe the variables window as sumValue stores the sum of lightValue and darkValue;
and thresholdValue stores sumValue divided by two.

4. Compile and download
Robot > Compile and
Download Program

5a. Press Step button
Press the Step button in the
Program Debug window to step
through the program.

Checkpoint
The threshold is now being calculated as the average of the other two values. The debugger
window shows the values of all the variables as they are collected and/or calculated.

5b. Push the Touch Sensor
Push the Touch Sensor over light
and dark surfaces at the appropriate
times when you step through
the program.

5c. Observe variables
Observe the variables window as
lightValue, darkValue, sumValue and
thresholdValue are calculated.

3. Save the Autothreshold program.

5. Save program
File > Save, to save your current
autothreshold program.

ROBOTC

Automatic Threshold • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

6. Open your LineTrackTimer program.

6a. Open and Compile
Select File > Open and Compile
to be prompted to open a file.

6b. Select the program
Select LineTrackTimer from your
previously saved programs, then
double click to open it.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

7a. Highlight code
Highlight exactly this
section of code in
the LineTrackTimer
program.

7b. Select Copy
Select Edit > Copy
to copy the
highlighted code.

7. Copy the code highlighted below, from lines 5 to 29 of the LineTrackTimer program. Be
careful to copy exactly this portion of the program.

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < 43)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

8. Reopen the autothreshold program.

8a. Open and compile
Select File > Open and Compile
to open a file.

8b. Select the program
Select the authothreshold
program from the previous
saved programs.

9. Paste the code you copied between “sumValue/2;” and the concluding curly brace.

9. Paste the copied code
Place the cursor right before the
last curly brace and select Edit >
Paste to paste the code.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

|
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ROBOTC

Automatic Threshold • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

10. Modify code
Replace the
condition, which had
contained a number,
with the variable
“thresholdValue”, that
holds the calculated
threshold value.

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

10. Change the condition of the “borrowed” if-else statement so that instead of comparing the
light sensor value to a set number, it checks it against the “thresholdValue” variable calculated
in the Autothreshold program.

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

Checkpoint
Your final program should look like the one below, and on the following page.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations (cont.)

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Checkpoint
Your final program should look like the one below. (continued)

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

11. Compile and Download to your robot.

11. Compile and download
Select Robot > Compile and
Download Program to run your
robot.

Checkpoint
Test your program. Find a line you can track in a place where you can turn the lights on and
off. Run your program and press the Touch Sensor once with the Light Sensor over light, to read
the value of the light surface. Move the robot so that it is in line tracking position, with the Light
Sensor over the line.

Pressing the Touch Sensor for the second time should not only read the dark value and calculate
the threshold, but should also make the robot track the line for three seconds. Now turn the lights
off, and run the program again. The robot should still be able to track the line!

Test program with lights off
Change the light in the room and test the
program again. The robot should again be
able to track the line, demonstrating its ability to
calculate a threshold in different conditions.

Test program with lights on
Show the robot what the light surface looks
like, then the dark one, and it should track the
line for three seconds.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

12. While the robot is waiting for the Touch Sensor to be pushed, program the robot to display
a message telling a user to press the button over a light surface. This command makes the
NXT display, on its screen, the words “Read Light Now” at position 0, 31 (that’s the left edge,
about halfway down). Place a similar line in the second while() loop that does the same
thing, but says “Read Dark Now”.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

12b. Add this code
Tells the NXT to display, on its
screen, the words “Read Dark
Now” after the Touch Sensor has
been pushed and released once.

12a. Add this code
Tells the NXT to display, on its
screen, the words “Read Light
Now” at the beginning of the
program.

The program works, but does need to be made more user-friendly. Right now, the robot will not
tell you what to do, or when. Place simple instructions in the code to solve this problem.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

13. Compile and Download your program to the robot.

13. Compile and Download
Select Robot > Compile and
Download Program.

14. Test the program. After the program starts, the message, “Read Light Now” should appear
on the NXT screen. After the Touch Sensor is pushed and released, the NXT screen should
display the message, “Read Dark Now.” As you did previously, place the robot so that its
Light Sensor is directly over the line, and its chassis roughly parallel with the line so that it is
in good position to track it. When you press the button, the threshold should be calculated,
and the robot should track the line for three seconds.

14a. Read light
When the NXT displays “Read Light
Now”, record the light surface value.

14b. Read dark
When the NXT displays “Read Dark
Now”, place the robot in position
to track a line.

14c. Autothreshold line track
The robot should track a line
for three seconds and end the
program.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

End of Section
This is the complete code for the Automatic Threshold program.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

The robot now tracks a line with its own calculated threshold, and can advise users what to do,
and when.

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Automatic Threshold Threshold Calculations (cont.)

ROBOTC

Automatic Thresholds Quiz • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Thresholds Quiz

3. What does it mean to “declare” a variable?

1. The output of a sensor is always in the form of a:
 a. value.
 b. decimal.
 c. threshold.
 d. frequency.

2. If we want to store a decimal value in a variable named my_variable,
 then the variable type we select should be a(n) _____________.

4. Cross out the names on the following list, which cannot be used as variable names.
 a. true
 b. my_variable
 c. var1x
 d. ants go marching
 e. 1_by_1
 f. one_by_one
 g. motor
 h. PB&J

5. Using the following bit of code, write a line of code that will calculate the value of a times b
 and store it in the variable “product”. What value will be in “product” after the line is run?

int a;
int b;
int product;
a = 10;
b = 100;

1
2
3
4
5
6

Variables

NAME DATE

ROBOTC

Automatic Thresholds Quiz • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

6. In the space below, identify all the variables used in the Automatic Thresholds program,
 and briefly describe what each one does.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;

task main()
{
 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 while(SensorValue(touchSensor) == 0)
 {
 nxtDisplayStringAt(0,31,”Read Light Now”);
 }
 lightValue = SensorValue(lightSensor);
 wait1Msec(1000);
 while(SensorValue(touchSensor) == 0)
 {
 nxtDisplayStringAt(0,31,”Read Dark Now”);
 }
 darkValue = SensorValue(lightSensor);
 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;
 ClearTimer(T1);
 while(time1[T1] < 3000)
 {
 if(SensorValue(lightSensor) < thresholdValue)
 {
 motor[motorC] = 0;
 motor[motorB] = 80;
 }
 else
 {
 motor[motorC] = 80;
 motor[motorB] = 0;
 }
 }
 motor[motorC] = 0;
 motor[motorB] = 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Variables

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In this lesson, we’re going to investigate the meaning of this curious line of code:

 n = n + 1;

Reading it in the normal mathematical sense, this is a contradiction... an impossibility. There’s
no number out there that can be one more than itself. Of course, that would be misreading what
the line says entirely. In fact, this is not an equation, but a command in ROBOTC, and a perfectly
sensible one, when you understand what it’s really saying.

Line Counting Counting

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Line Counting Counting (cont.)

In this lesson, we’re going to learn how to use a robot to count. Using code we have already
discussed, along with some new stuff, we will find out what we can do with this “line
counting” concept.

Let’s back up a step. Where have we seen something like this before?

motor[motorC] = 50;
...sets a motor power setting to the numeric value 50.

motor[motorB] = SensorValue(soundSensor);
...sets a motor power to match the value of a sensor reading.

thresholdValue = sumValue/2;
...sets one variable to be equal to another variable divided by two.

In all of these situations, the command is to set a value to something. To the left of the equal
sign, is the variable or other quantity that is set. To the right of the equal sign, is the value that it
will be set to.

n = n + 1; is part of the same family of commands. It is clearly not meant to say that “n is equal
to n plus one,” but rather that the program should set n equal to n plus one. How does that work?
Well, if n starts at zero, then running this command sets n to be equal to 1. Let’s substitute 0 for
the n on the right side and see what happens.

n starts at 0, so...

n=n+1; becomes n=0+1;

n is set to 1, so now...

n=n+1; becomes n=1+1;

... and n is set to 2, so now...

n=n+1; becomes n=2+1;

And so on! Each time you run the command n=n+1; the value in the variable n is increased by 1!

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

When would this be useful? Let’s examine the warehouse task in more detail.

To get around the warehouse, the robot needs to count lines. Every time you reach a new line,
you add one to the number of lines that you’ve seen. In command form, that looks like:

count = count + 1;
The new count equals the current count plus one. Commands of the form n = n + 1, like this
count = count + 1, add one to the value of the variable each time the command is executed, and
can be used over and over to count upwards, leaving the current count in the variable each time.
By running this line once each time you spot an object that you want to count, you can keep a
running tally in your program, always stored in the same variable. Your robot can count lines!
This will come in quite handy for this project.

Line Counting Counting (cont.)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In this lesson, we’re going to start teaching the robot to count lines. The eventual goal of this
robot is to have it travel to a certain destination by counting special navigation markers on
the floor.

We have one piece of the puzzle now, we know how to count.

What we still need to figure out are:

When to count

When NOT to count

How to stop, based on the count

•

•

•

1a. Open and Compile
File > Open and Compile
to open up the program
Autothreshold.

1c. Open Autothreshold
Press the Open button to open
the program.

1b. Find Autothreshold
Find Autothreshold and click on
the program previously saved.

1. Start with your automatic threshold calculation program, the one that asks you to push the
button over light and dark, and then tracks the line.

Line Counting Line Counting (Part 1)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

2. For this lesson, this program will be saved as, “Linecounter”.

2a. Save As
Select File > Save As to save
your existing code to a new
file, with a new name.

2c. Save the program
Press the Save button to save the
new program.

2b. Name the program
Name the new program file
“Linecounter”.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like before modifications.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

The existing program already has the sensors configured, and finds a nice threshold value so
we don’t have to worry about either of those. The task at hand, counting lines, involves looking
for light or dark just like the Line Tracker did. But unlike the line tracker, our robot only needs to
move straight forward, so let’s convert over the parts of the code that do steering.

ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3a. Modify this code
Change both motorB
and motorC to equal
power levels. We will
use 50.

3b. Delete this code
Delete both these sections of code,
which steer the robot in the original
line tracking program.

Line Counting Line Counting (Part 1) (cont.)

3. Change the first movement portion of the Line Tracking if-else statement to just make the robot
go straight instead. Remove the other movement-related commands.

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like after modifying the steering.

Line Counting Line Counting (Part 1) (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

ROBOTC

 Line Counting • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4. Now let’s add the lines to turn on PID control for both motors to help keep the robot moving in
a straight line. If you need a refresher you can review PID in the improved movement section.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 }

 }

}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Line Counting Line Counting (Part 1) (cont.)

4. Add this code
Add these two lines to turn on PID
control for both motors.

5. Because we do want to look at light and dark for counting purposes, let’s keep the light sensor
if-else statement in place.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. We’re definitely going to be counting (lines), and we don’t have a counter variable, so let’s
create one. It has to be an integer – it’s a numeric value, and it won’t have decimals – and
we’ll call it “countValue”. After the name, add “= 0” before the semicolon. This statement
declares an integer named “countValue” and assigns it an initial value of 0.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);

 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Line Counting Line Counting (Part 1) (cont.)

6. Add this code
Declare an integer variable
named “countValue”, with a
value of 0. This variable will
be used to count the number
of lines we have passed.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
Now, let’s see what we should be doing in terms of counting. Suppose the robot starts running, and...

Here’s a line! Add one to our count

Robot crosses first line
The robot has crossed its first line, so the line
count should now increase to one.

Light Sensor runs over light
Since the robot is running over light, it hasn’t reached
a line, and the line count should remain at zero.

Robot crosses second line
The robot has crossed its second line, so the
line count increases again to two.

Light Sensor runs over light
The robot is running over light again, and
the line count remains at one.

And so on. It looks like dark means a line, and that’s when we want to count.

Count when dark... “If the light sensor value is lower than the threshold, count.” The adding-one
code should go in the part of the code that is run when the value of the Light Sensor is below
the threshold: inside the {body} of the if-else statement starting on line 38.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Put the add-one code countValue = countValue + 1; in the “seeing dark” part
of the if-else statement. The “else” block of code should remain empty so that the robot
does nothing when it’s over a light area, just like we want.

7. Add this code
Insert the add-one code here, so that the robot
adds one to the line count whenever it sees dark.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like after adding the add-one code.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve written code that tells the robot when to count.
Still to come: testing and debugging the program.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

1. Before we test, we need to add something that will help us determine whether the program
is working or not, before it just reaches the end and erases all the data. Since we have the
debugger on our side, there’s a trick we can use. On the very last line of your program, click
once in the grey bar between the code and the line number. A red circle will appear, marking
the creation of a breakpoint.

A breakpoint is a spot you designate in your code where the robot should automatically go into a
time-stop state, as it did while using the step command. The advantage to using a “breakpoint”
rather than the “step” approach allows your robot to run the program at normal speed until the
program reaches the break point.

2. Compile and Download the program to the robot to begin the test!

2. Compile and Download
Robot > Compile and
Download Program

In this lesson, we’re going to learn how to use a breakpoint to debug the line
counting program.

1. Add breakpoint
Place your cursor next
to the last curly brace,
then click in the grey bar
to create a breakpoint,
marked by a red circle.

Line Counting Line Counting (Part 2)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4b. Find darkValue
Wait 1 second, position the robot with the Light
Sensor over the first line and positioned to go
forward, and press the Touch Sensor again. As
soon as the Touch Sensor is pressed, the robot will
begin to move forward, counting lines as it goes.

4a. Find lightValue
Push the Touch Sensor while the robot’s
Light Sensor is over a light area.

3. Open up the Debugger, then select both the Global Variables and the NXT Devices options so
both these windows are visible.

3a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

3b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT Devices.

4. Start the program, then follow the prompts on the NXT screen to press the Touch Sensor to
store the values of light and dark surfaces in the variables lightValue and darkValue. The
second time you press the Touch Sensor, the robot should begin moving forward.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
Since the line tracker we originally borrowed the code from was the Timer version, this behavior
should run for a set amount of time, then hit the breakpoint. The program state freezes when it
hits the breakpoint, so the motors keep running – they were running when we froze the program,
so they’ll keep running because there’s nothing to tell them to stop.

5. Observe the variables window, and find the value of your variable “countValue”, which should
be the number of lines your robot passes over. The number of lines the robot has passed
appears to be... negative 13,487.

5. Observe “countValue”
Observe the value of the last
variable, “countValue” in the
Global Variables window.

Line Counting Line Counting (Part 2) (cont.)

Breakpoint
This dialog tells you
that your program
has reached the
breakpoint you set.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. Run the program again with the robot connected, this time watching to the value of the
variable “countValue” in the variable window as the robot runs.

Checkpoint
Look what happens to the variable “countValue.” It doesn’t move when we’re over light, which
it shouldn’t. But when you place it over the dark line and press the Touch Sensor it counts more
than once – thousands of times, actually. The number gets so big that it confuses ROBOTC and
wraps around into the negative numbers!

Counting more than once is the same problem we had when we were trying to detect the Touch
Sensor press to read Thresholds! Remember back when the program zipped through both
readings too quickly because the Touch Sensor was still held when the program reached the
second check?

Line Counting Line Counting (Part 2) (cont.)

Flashback: Counting too fast
Back in the Automatic Thresholds section, you had another situation where the robot
counted too many times, too quickly, and did not work correctly as a result.

ROBOTC

 Line Counting • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

It looks like the same thing is happening here, but about 10,000 times worse. Per second.

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If (condition)
The robot checks the condition.
When it is true, it adds one to the
value of “countValue.”

Line Counting Line Counting (Part 2) (cont.)

Let’s look at what happens when the robot crosses a dark line. It checks the if-condition, which is
true, and adds one to the variable “countValue”.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Then it skips the else, and moves back up to the top of the while() loop.

Top of the while() loop
After adding one to “countValue”,
the robot moves back to the top
of the while() loop.

If (condition) again...
The robot again checks the
condition, which is still true,
and adds one to the value
of “countValue.”

Then it does what it did before: it checks the condition... which is still true even on this second
pass because the sensor is still over the line, and adds another 1 to “countValue”.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve found the problem: the robot counts one black line thousands of times when we only
want to count the line only once. In the next lesson you will use a variable to put a stop to the
double counting.

The robot keeps cycling through the while loop over and over again, and keeps adding one
to “countValue” every time it does. And this is the problem: the robot is seeing, and hence
counting, the same black line for what seems to be thousands of cycles in the amount of
time it takes to pass over it.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

We need to find some way to make the robot count the line only once.

In the Autothreshold program, we solved the problem by putting in a one second delay to allow
you to take your finger off the button before the program moves to the next line of code.

Line Counting Line Counting (Part 3)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

A one-second pause worked well for the button-pushing situation, but is it really appropriate
here? What if the lines are close together? The robot could miss a lot of lines in that one second
gap. Or what if the line is really huge? It would still count more than once.

It looks like we’ll have to come up with something more creative. We could look at this line as
being made up of several distinct regions: one light region where you come in from, a dark
region, and then another light region.

Line Counting Line Counting (Part 3) (cont.)

Single thick line
If a line is thick enough for whatever reason,
the robot may still not get past it before
counting again, and it would be counted twice.

Multiple close lines
The robot should count all of these lines
separately, but could potentially drive over all of
them during the “don’t count again” period, and
end up counting them as only one line.

Anatomy of a Line
A line is composed of a
light region, followed by a
dark region, followed by
another light region.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Why not let the robot count only on the transition from light to dark? If you look at this picture
there is only one light to dark transition per line. And exactly one. So you can count every line
and never count the same line twice. What we want to count is not “seeing dark”, but “seeing
the transition to dark.”

What does this transition look like? The transition is when you used to be seeing light, as in the
picture below left, and now are seeing dark, as in the picture below center.

But how do we keep track of that? What we need is a variable to store the color of the region
that we saw last.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

2
3
4
5
6
7
8
9

10
11

1. Modify code
Declare a new integer variable
called “lastSeen”.

Checkpoint
We’ll decide now that “lastSeen” is going to have 0 in it if the last thing it saw was dark, and
a 1 in it if the last thing it saw was light. This is an arbitrary choice, but one that must be kept
consistent after this point!

0 = dark
1 = light

1. Declare a new integer variable, int, and call it “lastSeen”.

In this lesson, we’re going to learn how to make our line counter count a line only once, by
counting only the transition to dark. A variable will be used to keep track of the previously
seen color.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;
 lastSeen = 0;

 }

 else
 {
 lastSeen = 1;
 }

 }

}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

2. Modify code
Assign the variable
“lastSeen” the value
of 1 just before the
while() loop.

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2. Just before the while() loop, start the value of lastSeen at 1 (which is “light”) so that we are
able to count the first line

2. Modify code
Assign the variable
“lastSeen” the value
of 1 just before the
while() loop.

3. The rest of the program needs to make sure this variable stays up to date. In the block of code
corresponding to the “dark” area of the if-else loop, add the line “lastSeen = 0;” And in the
block for the “light” area (inside the else block), add the line “lastSeen =1;”.

3a. Modify code
Assign the variable
“lastSeen” the value
of 0 in the “dark” area
of the if-else structure.

3b. Modify code
Assign the variable
“lastSeen” the value
of 1 in the “light” area
of the if-else structure.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4. Save, compile and download the program to the robot to see how we are doing. Bring up
the Debugger, the Global Variables Window and the NXT Device Control Display.

Checkpoint
Run the robot, but pick it up and hold it over either the dark or light areas. Whenever
it’s over the dark area, “lastSeen” should be 0. Whenever it’s over the light area, “lastSeen”
should be 1.

Line Counting Line Counting (Part 3) (cont.)

Debuggers
Compile and Download
the program, then make
sure the debugger
windows are still open.

Robot held over Dark
When the Light Sensor is held over the
dark line, the lastSeen variable in the
Global Variables window should be 0.

Robot held over Light
When the Light Sensor is held over the
light area, the lastSeen variable in the
Global Variables window should be 1.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

5. A light-to-dark transition will be marked by a “last seen” color of light, and a “currently
seeing” color of dark. Therefore, the counting must be in the seeing-dark portion of the code,
but should also check that the “lastSeen” value is light, a value of 1.

 Create an if-else structure (beginning with the line “if (lastSeen == 1)” around the existing
code. The “else” portion is actually optional, and is left out here to save space.

5. Modify code
Create an if structure
which checks if the
variable “lastSeen”
is equal to 1. The
add-one code should
become its {body}.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. Save, download, and run. Watch the count variable in your program as the robot travels
over lines, and with any luck, the count will match the number of lines!

Line Counting Line Counting (Part 3) (cont.)

Success
The robot now travels for 3 seconds, counting
appropriately only when it has reached a new
line (a light-to-dark transition).

Observe the value of “countValue” in the
debug window for each position of the robot
shown below.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint. This is what the program should look like after all your modifications.

Line Counting Line Counting (Part 3) (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve covered the first two items we need for our line counting program.
In the next section, we’ll learn how to stop.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

The Line Tracking code we originally borrowed was the Timer version, which works by
running while the elapsed time value is less than the time limit. Right now it loops until
3000 milliseconds have passed. What we really want is for this robot to move until it has
passed 7 lines.

In this lesson, we’re going to learn how to make our line counter stop when it has passed over
a specific number of lines, instead of stopping after a specific amount of time has elapsed.

Line Counting Line Counting (Part 4)

While loop
The (condition) in the
while loop determines
whether the move-
and-count behavior
continues, or whether
the program moves on
to the next behavior.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);
 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1. Replace the “Timer < 3000” condition with “countValue < 7”.

1. Modify code
Change the condition
the while() loop checks
from “Timer < 3000”
to “countValue < 7”.

2. Make sure your table has at least seven lines on it.

Line Counting Line Counting (Part 4) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

3. Save, download and run.

Line Counting Line Counting (Part 4) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Line Counting Line Counting (Part 4) (cont.)

End of Section If this is what your program looks like, you’ve finished the line counting program!

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ROBOTC

Line Counting Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting Quiz

2. Explain what the line of code above does.

n = n + 1;1

1. Explain, in your own words, how the “lastSeen” variable prevents double-counting
 of lines in the program above.

int lastSeen;
void forward4Lines()
{
 lastSeen = 1;
 while(countValue < 4)
 {
 if(SensorValue(lightSensor) < thresholdValue)
 {
 motor[motorC] = 50;
 motor[motorB] = 50;
 if(lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }
 }
 else
 {
 lastSeen = 1;
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Variables

NAME DATE

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

A typical task for the inventory robot may be to retrieve the object in aisle five. How can the
robot get there? The robot is not yet advanced enough to determine its own path, so it will
require human assistance to find a route. For example:

Destination
The robot must navigate to this
location to retrieve an item.

In order to follow the path above, the robot needs a way to orient itself in the warehouse
environment. With the irregular spacing between shelves, distance may not be reliable. Instead,
the robot must rely on the floor markings.

Path
A human programmer chose
this path for the robot (others
were also possible).

Landmarks
This robot will rely on floor
markings to help it find its way
along the path.

Patterns of Behavior Behaviors

In this lesson, you will learn how the various ways of navigating the warehouse environment
break down into a common set of sub-behaviors.

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Let’s view a typical task for the robot. Suppose the object it needs to get to is at the X on the map
below. How can the robot get there?

We could get there by following this
blue route …

Patterns of Behavior Behaviors (cont.)

... or perhaps this yellow one, or this
green one?

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Let’s focus on the first (blue) path. What does the robot need to do in order to follow this path?
The large behavior breaks down nicely into smaller behaviors.

Patterns of Behavior Behaviors (cont.)

The green path can also be broken down easily into smaller behaviors.

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Perhaps most interestingly, these two paths seem to share some common sub-behaviors...

Patterns of Behavior Behaviors (cont.)

End of Section
This repeating of sub-behaviors is no coincidence. The smaller behaviors actually represent
common actions in the warehouse environment, and so they will likely show up in any number
of tasks there. C languages like ROBOTC include structures called “functions” that are made to
capitalize on exactly this kind of patterned reuse of commands to make your code more adaptable,
readable, and reusable. In the next few sections, you will learn to build and use a set of functions to
allow rapid construction and reorganization of behaviors to get around the warehouse.

Shared behaviors
These sub-behaviors
appear in both of the
larger behaviors.

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In the last video, we identified several key simple behaviors that, when combined, will make up
the complex behavior of moving to the destination shown here.

Patterns of Behavior Creating and Using Functions

In this lesson, you will learn how to create and use functions for two of the simplest behaviors.

For each of these simple behaviors, we are going to create a function which encapsulates the
behavior in a single, reusable package. Declaring a function basically means you’re creating
your own command in the language of ROBOTC, so you can already begin to see how
powerful this technique will be once you master it....

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

1. Open ROBOTC and start a new program.

1. Create new program
Select File > New to create a
new program.

2. Create the familiar task main, but don’t put anything in it yet.

task main()
{

}

2. Add this code
Add a task main() {}.

1
2
3
4
5

3. At the top of your program, before task main(), make some space for your functions.

task main()
{

}

3. Create space
Add a few blank lines
above task main
where your functions
will go.

1
2
3
4
5
6
7

Patterns of Behavior • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

5. Place the commands for a left turn behavior between the function’s { } braces. This version of
the left turn uses the rotation sensor to determine when the robot has turned far enough. See
Sensing > Line Tracking > Line Tracking (Rotation, Pt. 1 and Pt. 2) for a review of this sensor.

4. Create the basic skeleton of a function called “turnLeft”. “void” is a keyword used to begin the
declaration of the function, much like “task” in task main, and similarly, the function includes a
pair of curly braces that will contain the commands in the function body.

void turnLeft()
{

}

task main()
{

}

4. Add this code
This code creates a
new function called
turnLeft(), and leaves
a space between the
curly braces to put
its commands.

1
2
3
4
5
6
7
8
9

10
11
12

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

}

5. Add this code
Add the commands
for a left turn behavior,
between the curly braces
of the new function.

The function will run the
commands between its
braces when it is called,
just as task main runs
the commands between
its braces when the main
program is run.

The left turn itself resets
the rotation sensor, then
turns until the wheel has
rotated a set amount,
then stops both motors.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Patterns of Behavior • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

6. You have created the function turnLeft, and specified the commands that it should run when
called (a Rotation Sensor-controlled left turn). To use the function, simply call it by name in the
main task.

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

 turnLeft();

}

6. Add this code
Call the function
turnLeft() by
name, followed by a
semicolon, to run it.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

7. Save your program, download, and run.

7b. Name the program
Give this program the name
“functionTest”.

7c. Save the program
Press Save to save the program
with the new name.

7a. Save As
Go to the File menu and
select “Save As...”

Patterns of Behavior • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

Checkpoint
You have created the function turnLeft and told your program to run it in the main task. Does the
robot do what you wanted?

7. We said that one of the major advantages of functions was their reusability. Let’s see it in
action. Add another left turn, separated from the first one by a 1 second wait.

Robot running the leftTurn() function
The robot seems to do what we wanted...

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

 turnLeft();
 wait1Msec(1000);
 turnLeft();

}

6. Add this code
Add another call
to turnLeft(),
separated from the
first one by a
1 second delay.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Patterns of Behavior • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

9. Download and run again.

10. The use of the turnLeft() function to encapsulate the turning behavior in a custom command
seems to work well! Now, create one for the right turn, right below the turnLeft() function.

Robot running two leftTurn() functions
The robot turns once, then waits, and makes a second 90 degree turn.

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

void turnRight()
{

 nMotorEncoder[motorC] = 0;
 while(nMotorEncoder[motorC] < 160)
 {
 motor[motorC] = 50;
 motor[motorB] = -50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

10. Add this code
Create a function
called turnRight(),
below turnLeft(). It
should be almost
identical, but with a
right-turn behavior
inside it instead.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

11. Change the second left turn to a right turn instead. What should the robot do now?

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

void turnRight()
{

 nMotorEncoder[motorC] = 0;
 while(nMotorEncoder[motorC] < 160)
 {
 motor[motorC] = 50;
 motor[motorB] = -50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

 turnLeft();
 wait1Msec(1000);
 turnRight();

}

11. Modify this code
Change the second
leftTurn() call to a
rightTurn() call instead.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

12. Download and run again.

End of Section
You now have two of the most common warehouse (and movement, in general) behaviors written
as functions. You have also seen the ease with which these functions can be treated as commands
in the ROBOTC language to allow their rapid reuse in a situation like the warehouse where they
will be seen over and over again.

In the next lessons, you will move these two functions from their current location in the test
program (functionTest) into the main program, and complete the remaining behaviors.

Robot running leftTurn() then rightTurn()
The robot turns once, then waits, and turns the opposite direction back to the place where it started.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

The two turning behaviors you’ve created are useful, but disconnected from the rest of the
Warehouse program we’ve been working on. Functions only work in the programs they are
declared in, and right now, ours are in a test program called functionTest. Let’s start this
lesson by moving them into the main program file, and then we’ll work on turning the other
behaviors in the program into functions.

Patterns of Behavior Variables and Functions (Part 1)

In this lesson, you will transfer your two turning behaviors into the program from earlier
Warehouse activities, and create functions for the remaining behaviors in the program.

1. Highlight and copy the two functions in your “functionTest” program.

1a. Highlight code
Highlight both functions
and all their associated
code as shown.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
31 1b. Copy

Select Edit > Capy to
put the highlighted
code on the clipboard.

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

void turnRight()
{

 nMotorEncoder[motorC] = 0;
 while(nMotorEncoder[motorC] < 160)
 {
 motor[motorC] = 50;
 motor[motorB] = -50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

2. Open your LineCounter program.

3. Paste your functions just above the task main code in the LineCounter program.

2a. Open and Compile
File > Open and Compile
to open up the program
LineCounter.

2c. Open LineCounter
Press the Open button to open
the program.

2b. Find LineCounter
Find LineCounter and click on
the program previously saved.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11

3a. Place
cursor here
Place your cursor
on the line just
above task main
so your pasted
code will go
there.

3b. Paste
Select Edit > Paste to
put the copied code
into this program.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

Checkpoint
And just like that, your program has access to both functions. The rest of the task main could
use some cleaning via functions, though, so let’s do that next.

The other two functions we’ll need to create are:
• Threshold calculation
• Moving forward for specific numbers of lines

4. Create the structure for the findThreshold() function. Put it at the top of the program, above
the newly-pasted turnLeft() function.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;
void findThreshold()
{

}

void turnLeft()
{

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4. Add this code
Add the basic
structure for the
findThreshold()
function that we
are about to
create.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

5a. Highlight code
Highlight the code
that performs the
automatic threshold
measurement and
calculation.

5b. Cut
Select Edit > Cut
to remove the
highlighted code
from the program
and put it on the
clipboard.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue+darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

5. Highlight all the lines currently in task main that have to do with automatic threshold
calculation, and cut them to the clipboard using the Edit > Cut command.

Patterns of Behavior • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

6. Paste the lines into the {body} section of the findThreshold() function.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;
void findThreshold()
{

|

}

void turnLeft()

Auto
Auto

1
2
3
4
5
6
7
8

6a. Place
cursor here
Place your cursor
on the line between
findThreshold()’s
curly braces so your
pasted code will go
there.

6b. Paste
Select Edit > Paste to
put the copied code
into this program.

Checkpoint. Finding a threshold is now as simple as telling the program to findThreshold();.
But first, let’s finish writing the other functions.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;
void findThreshold()
{

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue+darkValue;
 thresholdValue = sumValue/2;

}

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

7. Create the structure for the forward7Lines() function. Put it just under the findThreshold()
function, outside its last closing brace.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;
void findThreshold()
{

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue+darkValue;
 thresholdValue = sumValue/2;

}

void forward7Lines()
{

}

void turnLeft()

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

7. Add this code
Add the basic
structure for the
findThreshold()
function that we are
about to create.

Patterns of Behavior • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

8b. Highlight code
Highlight the code
that performs the line
counting and forward
movement based on
lines crossed.

8a. Delete this code
Remove the leftover
ClearTimer command
that is in this section.

8c. Cut
Select Edit > Cut
to remove the
highlighted code
from the program
and put it on the
clipboard.

8. Highlight all the lines currently in task main that have to do with moving forward for a given
number of lines, and cut them to the clipboard using the Edit > Cut command. Delete the
unneeded ClearTimer command that’s still in this portion of the code.

 ClearTimer(T1);
 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

Patterns of Behavior • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

}

void forward7Lines()
{

|

}

void turnLeft()

23
24
25
26
27
28
29
30
31
32

9a. Place
cursor here
Place your cursor
on the line between
forward7Lines()’s
curly braces so
your pasted code
will go there.

void forward7Lines()
{

 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

9. Paste the lines into the {body} section of the forward7Lines() function.

9b. Paste
Select Edit > Paste to
put the copied code
into this program.

Checkpoint
You now have a function that lets you move forward for 7 lines at a time. Save your
program, but don’t download yet.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

Your program now has access to two additional behaviors: findThreshold() and forward7Lines(),
which we have just extracted into separate functions. In addition, we have the two behaviors we
imported from our test file, turnLeft() and turnRight(). All that remains now is to tell the task main
to run them in the desired order... right?

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 findThreshold();
 forward7Lines();

}

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

10. Add this code
Tell your robot to run
the findThreshold(()
and forward7Lines()
functions as part of its
main program.

11. Save, download, and run. An error message will appear, indicating that something is
not right... let’s see if we can find what’s going wrong.

11. Compile and Download
Compile and download your program,
but be ready for unusual results...
continue on to the next step.

10. Call the new functions in task main. Finding the threshold comes first, followed by the
movement forward for 7 lines. We’ll wait to see if that works before we put in the turns.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

Checkpoint

Error!
Something is wrong
with the program.

The problem with your program has to do with a property of variables called scope. Scope
determines how broadly applicable a value should be. The variables in your program are
all declared in task main. But the actual code that’s trying to use them is outside task main,
in separate functions. They cannot “see” the variables because they are only accessible within
task main. It seems silly to us now that this should be the case, but scope actually plays a vital
role in letting functions run without interfering with each other.

task main()
{

 int lightValue;

85

86

87

88

89

90

1

2

3

4

5

6

7

8

9
10

void findThreshold()
{

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

Nevertheless, for now, we’re going to take a very heavy-handed approach to solving this problem.
We’re going to move the variables so that they are visible to all functions and tasks by making
them global. This has advantages and disadvantages, but for now, we’re going with it.

Scope: How broadly applicable a value should be

Scope
The variable lightValue is declared in task main, so the function
findThreshold() cannot see it to use it. This causes an error
when you try to compile and download the program.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

12b. Cut
Select Edit > Cut
to remove the
highlighted code
from the program
and put it on the
clipboard.

12a. Highlight code
Highlight the code that
declares variables in
task main.

12. Highlight all the lines currently in task main that declare variables needed by the functions,
and cut them to the clipboard using the Edit > Cut command.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 findThreshold();
 forward7Lines();

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 1) (cont.)

13. Paste the lines at the top of the program, outside all the functions, but just below the Motor
and Sensors auto-generated lines.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;

|

void findThreshold()
{
 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);

Auto
Auto

1
2
3
4
5
6
7
8

9a. Place
cursor here
Place your cursor
on the line above
the findThreshold()
declaration so your
pasted code will go
there.

9b. Paste
Select Edit > Paste to
put the copied code
into this program.

Checkpoint
All your variables are now declared “globally”, and therefore will be visible to all of the
functions and tasks in the program. This will have side effects down the line, but for now,
it will get us the result we want.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor = (tSensors) S2;

int lightValue;
int darkValue;
int sumValue;
int thresholdValue;
int countValue = 0;
int lastSeen;

void findThreshold()
{

 while (SensorValue(touchSensor)==0)

Auto
Auto

1
2
3
4
5
6
7
8
9

10
11
12

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

End of Section
Download and run your program. The robot should now run exactly seven lines, then stop, using
functions. The result isn’t any different from what you’ve seen before, but you know that under
the hood, your program is much more powerful and expandible now, and you are now ready
to finish solving the warehouse problem. In the next lesson, you will program the remaining
necessary functions for the warehouse.

Patterns of Behavior Variables and Functions (Part 1) (cont.)

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Patterns of Behavior Variables and Functions (Part 2)

In this lesson, you will learn to adjust the behaviors to fit the actual path you want to take in
the warehouse, and make a few additional refinements as necessary.

And now, let’s return to the path we want to take through the warehouse. The needed behaviors
(in addition to finding the threshold, which isn’t shown) are:

Our currently programmed behaviors are:

findThreshold(), which finds a threshold
forward7Lines(), which travels forward for 7 lines
turnLeft(), which turns the robot 90 degrees to the left
turnRight(), which turns the robot 90 degrees to the right

It looks like we have a fair number of changes to make, so let’s get started.

•
•
•
•

Patterns of Behavior • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

void forward4Lines()
{

 lastSeen = 1;

 while (countValue < 4)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

1b. Modify
this code
The number of line
counts in the while
loop’s (condition) is
what determines how
many lines the robot
watches for. Change
this number from 7
lines to 4 lines.

1. The current forward-for-lines goes for 7 lines, but the path requires a 4, a 3, and a 2. Start by
modifying the 7-line behavior to be a 4-line behavior.

1a. Modify
this code
Change the name of
the function to indicate
its new behavior: going
forward for 4 lines,
instead of 7.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

task main()
{

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 findThreshold();
 forward4Lines();
 turnLeft();
 forward3Lines();
 turnRight();
 forward2Lines();

}

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

2a. Modify this code
Change the old
forward-for-7-lines
command to the new
forward-for-4-lines one.

Checkpoint
Our functions are in place to perform each of the behaviors we identified in our initial plan.
Three of them, forward4Lines, turnLeft, and turnRight are already written. Let’s finish up the others.

 findThreshold();
 forward4Lines();
 turnLeft();
 forward3Lines();
 turnRight();
 forward2Lines();

101
102
103
104
105
106
107
108

2b. Add this code
Add the appropriate
function calls for the
remaining behaviors,
even the ones where
we haven’t written the
actual functions yet.

2. Adjust your task main to run the new forward-for-4-lines function, and add all the other
behaviors which we will need, even if they haven’t been written yet. Note those for later.

Patterns of Behavior • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

3a. Highlight code
Highlight the
forward4Lines()
function, including
its curly braces
and everything
between them.

void forward4Lines()
{

 lastSeen = 1;

 while (countValue < 4)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }
 else
 {
 lastSeen = 1;
 }

 }

}

3. The remaining two behaviors, forward3Lines() and forward2Lines() are very close relatives of
the existing forward4Lines(). Copy the forward4Lines() function, and paste two copies of it,
which we will turn into the 3-line and 2-line behaviors in the next step.

3b. Copy
Select Edit > Capy to
put the highlighted
code on the clipboard.

Patterns of Behavior • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

 if (SensorValue(lightSensor) < thresholdValue)
 {
 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

|

void turnLeft()
{

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

4a. Place
cursor here
Place your cursor
on the line below
the forward4Lines()
declaration so your
pasted code will
go there.

4. Paste two copies of the behavior right after the original.

4b. Paste
Select Edit > Paste to
put the copied code
into this program.

4c. Paste again
Paste a second copy
of the same code right
after the first one.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

5. You have three copies of the same behavior. Change two of them to 3-line and 2-line versions.

void forward4Lines()
{

 lastSeen = 1;

 while (countValue < 4)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

void forward3Lines()
{

 lastSeen = 1;

 while (countValue < 3)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

void forward2Lines()
{

 lastSeen = 1;

 while (countValue < 2)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

void forward4Lines()
{

 lastSeen = 1;

 while (countValue < 4)
 {

32
33
34
35
36
37
38
39
40

void forward3Lines()
{

 lastSeen = 1;

 while (countValue < 3)
 {

63
64
65
66
67
68
69
70
71

void forward2Lines()
{

 lastSeen = 1;

 while (countValue < 2)
 {

94
95
96
97
98
99

100
101
102

Modify this code
Change the second
forward-for-lines
behavior to do 3 lines,
and the third behavior
to do 2 lines.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

Checkpoint
Save, download, and run. The robot will scoot along for 4 lines and turn, just as planned...
and then, mysteriously, stop.

The program has a few bugs. This is normal, programs seldom work perfectly on the first try,
especially after making big changes like the ones we just did. Continue on to begin fixing them!

Stuck?
The robot seems to stop
after the second command.
What’s it waiting for?

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

void forward3Lines()
{

 lastSeen = 1;

 while (countValue < 3)
 {
 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Missing reset
An ugly side effect of
using global variables
is that they are shared
between functions even
when you don’t want
them to be.

This means that
countValue is still
4 from the 4-line
command that is run
earlier in the program.
The while loop will
immediately kick out
without running any
additional lines!

void forward3Lines()
{

 lastSeen = 1;
 countValue = 0;

 while (countValue < 3)
 {
 motor[motorC]=50;
 motor[motorB]=50;

 if (SensorValue(lightSensor) < thresholdValue)
 {

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

6a. Add this code
This line resets the value
of countValue to a fresh
count of 0 lines for this
new movement.

void forward4Lines()33

void forward2Lines()96

6. The problem seems to have occurred in the forward3Lines() function, but remember that errors
in this function will need to be corrected in its two twins as well. It turns out there are two things
keeping this robot from moving on.

6b. Modify this code
Move the motor lines
out of the “dark”
portion of the code and
put them just outside
the if-else statement
so they run regardless
of whether the robot is
seeing light or dark.

Move only on dark?
We didn’t really give this much thought,
but this bug has been here the whole time.
The robot only starts moving if it’s seeing
dark, because it doesn’t reach the motor
commands otherwise.

6c. Repeat
Make the same changes
in the 4-line and 2-line
versions of the function.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

Checkpoint
That should solve the stopping problem. Now, let’s look at one other issue that you may have seen.

Clearance
The robot is clearly
biased toward the
side of the corridor. If
it proceeds along this
path, it will hit the wall.

7. The robot needs to back up a little before each turn. Add the appropriate movement
code to both turning functions.

void turnLeft()
{
 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < -100)
 {
 motor[motorC] = -50;
 motor[motorB] = -50;
 }

 nMotorEncoder[motorB] = 0;
 while(nMotorEncoder[motorB] < 160)
 {
 motor[motorC] = -50;
 motor[motorB] = 50;
 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

7a. Add this code
Make the robot back a
little away from the line
before turning.

void turnRight()153

7b. Repeat
Make the same change
in the right turn function.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 2) (cont.)

End of Section
Save, download, and run your program. At long last, the robot should complete its path
from start to finish.

So why did we go through all this extra trouble to write functions instead of just putting all the
code in the main task? Ask yourself for a moment what changes it would take to your program
to use the green or yellow paths instead: the simplicity of reuse will speak for itself... to use the
yellow path, all you would have to do is switch two lines in task main!

 findThreshold();
 forward4Lines();
 turnLeft();
 forward3Lines();
 turnRight();
 forward2Lines();

 findThreshold();
 forward6Lines();
 turnLeft();
 forward3Lines();
 turnLeft();
 forward2Lines();

 findThreshold();
 forward2Lines();
 turnLeft();
 forward3Lines();
 turnRight();
 forward4Lines();

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Patterns of Behavior Variables and Functions (Part 3)

In this lesson, you will learn how to use functions with parameters to expand their reusability
beyond the level of simple copy-and-paste.

There’s still one thing about these functions that could stand to be improved. As it is right now,
you have to write a new function every time you want to go a different distance. There is a better
way. Consider first, what the actual difference in code is between the three functions below:

void forward4Lines()
{
 countValue = 0;
 lastSeen = 1;
 while (countValue < 4)
 {
 motor[motorC]=50;
 motor[motorB]=50;
 if (SensorValue(lightSensor) < thresholdValue)
 {
 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }
 }
 else
 {
 lastSeen = 1;
 }
 }

}

void forward3Lines()
{
 countValue = 0;
 lastSeen = 1;
 while (countValue < 3)
 {
 motor[motorC]=50;
 motor[motorB]=50;
 if (SensorValue(lightSensor) < thresholdValue)
 {
 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }
 }
 else
 {
 lastSeen = 1;
 }
 }

}

void forward2Lines()
{
 countValue = 0;
 lastSeen = 1;
 while (countValue < 2)
 {
 motor[motorC]=50;
 motor[motorB]=50;
 if (SensorValue(lightSensor) < thresholdValue)
 {
 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }
 }
 else
 {
 lastSeen = 1;
 }
 }

}

The anwer: one number.

 while (countValue < 4) The difference
These three huge functions differ only in
one place: a single number that they use to
check how many lines they should run for.

 while (countValue < 3)

 while (countValue < 2)

Patterns of Behavior • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 3) (cont.)

We need to take advantage of this somehow. We can do it using a feature of functions
called parameters. A parameter is a “placeholder value” that you can use in a function’s
declaration to stand for a value that you will specify in the function call. Because you call a
function separately every time you want it to run, this means you can specify a different value
for the placeholder parameter every time!

 while (countValue < (your value here!))

1. Save your program as “warehouseParameters”.

7b. Name the program
Give this program the name
“warehouseParameters”.

7c. Save the program
Press Save to save the program
with the new name.

1a. Save As
Go to the File menu and
select “Save As...”

2. Delete two of your forward-for-lines functions.

void forward3Lines()
{

 countValue = 0;
 lastSeen = 1;

 while (countValue < 3)

66
67
68
69
70
71
72

void forward2Lines()
{

 countValue = 0;
 lastSeen = 1;

 while (countValue < 2)

99
100
101
102
103
104
105
106

2a. Delete these functions
Delete both the
forward3Lines() and
forward2Lines() functions.

Make sure you catch all the
code inside them, and the
closing braces at the ends.

Patterns of Behavior • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 3) (cont.)

void forwardLines(int numLines)
{

 lastSeen = 1;
 countValue = 0;

 while (countValue < numLines)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3b. Modify this code
Creating a parameter
looks a lot like a
variable declaration,
placed between the
parentheses that follow
the function name.

The parameter
“numLines” is created
here as an integer,
and can be used as a
placeholder anywhere
in the function {body}.

Its value is not
specified here at all.
It will (and must) be
provided by the task
that calls this function.

Placeholding using Parameters

Parameters are like temporary placeholder variables that give the programmer
the ability to “substitute” a value inside the function, without actually rewriting the
function each time. They require attention in two places: the function declaration,
and the function call.

void forwardLines(int numLines)
Parameter declared
“numLines” is now usable as
a placeholder in the function.

Function declaration:
In the function declaration, the presence of a parameter is announced by declaring
it, variable-style, between the (parentheses) following the function name. The
parameter can then be used like a value in the rest of the function.

(continued on next page...)

3a. Modify this code
Rename the remaining
function to have a more
general name.

3. Modify your remaining forward-for-lines function to be a general-purpose parameter version.

3c. Modify this code
Put the placeholder
parameter “numLines”
here in place of the
value that we want to
be able to fill in.

Patterns of Behavior • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Patterns of Behavior Variables and Functions (Part 3) (cont.)

Placeholding using Parameters (cont.)

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 findThreshold();
 forwardLines(4);
 turnLeft();
 forwardLines(3);
 turnRight();
 forwardLines(2);

}

110
111
112
113
114
115
116
117
118
119
120
121
122
123

4. Modify this code
Change the function
names to simply
forwardLines to match
your new function.

In the (parentheses),
place the value that you
want the parameter to
use for that run.

Checkpoint. Visualize the substitution that is happening with your parameter.

void forwardLines(int numLines)
{

 lastSeen = 1;
 while (countValue < numLines)
 {

33
34
35
36
37
38

task main()
{
 ...
 forwardLines(4);

108
109

...
117

4

forwardLines(4);
Parameter supplied
The numeric value 4 will take
the place of “numLines”

Function call:
The value of the parameter is specified separately each time the function is run. A
value is included in the (parentheses) following the function name when called, and
becomes the value of the placeholder in the function’s {body} code!

4. Modify your main task to take advantage of the new parameter.

Substitution
The value 4 is placed in the
(parentheses) when the function
is called, so the value 4 takes
the place of placeholder
“numLines” everywhere it
appears in the function.

Patterns of Behavior • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Patterns of Behavior Variables and Functions (Part 3)

End of Section
Save, download, and run your program. The robot should complete its path from start to finish.

Take a moment to reflect on what you have done here. You haven’t solved a simple problem
using complex tools. You’ve solved a whole family of problems, and created easy-to-use
tools that will make it simple to follow any of the paths your robot might need to take through
the warehouse.

Your robot is beginning to reach a higher level. You are no longer limited to simply performing
single tasks. Your programs, through the use of sensor information and the reuse of their own
code in parameterized functions, are beginning to solve the actual problems that underlie the
tasks, instead of just the single cases. This approach is many times more powerful, and your
understanding of it marks your entry into the real world of programming. Congratulations.

ROBOTC

Patterns of Behavior Quiz© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior Quiz

1. In your own words, define a behavior.

2. Which of the following keywords begins a function declaration?
 a. task
 b. int
 c. main
 d. func

3. Use the following code to answer the questions below.

void specialFunction(int p)
{
 motor[motorC] = p/2;
 motor[motorB] = p/2;
 wait1Msec(100*p);
}

task main()
{
 specialFunction(50);
}

1
2
3
4
5
6
7
8
9

10
11

 a. What behavior would running this program caus your robot to exhibit?

 a. How could you get specialFunction to move for 1 second?

Variables

NAME DATE

	Welcome Letter
	Setup - Build REM
	Setup - Download Firmware
	Setup - Download Firmware - Quiz
	Setup - Download Sample Program
	Setup - Download Sample Program - Quiz
	Fundamentals - Thinking about Programming
	Fundamentals - Thinking about Programming - Quiz
	Fundamentals - ROBOTC Rules
	Fundamentals - ROBOTC Rules - Quiz
	Movement - Challenge Description
	Movement - Moving Forward
	Movement - Moving Forward - Quiz
	Movement - Speed and Direction
	Movement - Speed and Direction - Quiz
	Movement - Improved Movement
	Movement - Improved Movement - Quiz
	Sensing - Challenge Description
	Sensing - Wall Detection (Touch)
	Sensing - Wall Detection (Touch) - Quiz
	Sensing - Wall Detection (Ultrasonic)
	Sensing - Wall Detection (Ultrasonic) - Quiz
	Sensing - Forward until Dark
	Sensing - Forward until Dark - Quiz
	Sensing - Line Tracking
	Sensing - Line Tracking - Quiz
	Sensing - Volume & Speed
	Sensing - Volume & Speed - Quiz
	Variables - Challenge Description
	Variables - Automatic Thresholds
	Variables - Automatic Thresholds - Quiz
	Variables - Line Counting
	Variables - Line Counting - Quiz
	Variables - Patterns of Behavior
	Variables - Patterns of Behavior - Quiz

